Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 20;66(Pt 12):o3224. doi: 10.1107/S1600536810047094

Ethyl 3-(3-oxo-3,4-dihydro­quinoxalin-2-yl)propano­ate

Waqar Nasir a, Munawar Ali Munawar a,*, Ahmad Adnan b, Saeed Ahmad c, Mohammad Akbar b
PMCID: PMC3011385  PMID: 21589514

Abstract

In the title compound, C13H14N2O3, the fused ring system is almost planar (r.m.s. deviation = 0.015 Å). The r.m.s. deviation for all the non-H atoms of the mol­ecule is 0.065Å. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds generate polymeric chains along the b axis containing alternating centrsymmetric R 2 2(8) and R 2 2(20) loops.

Related literature

For the synthesis, see: Taylor et al. (1965). For the biological activity of benzopyrazines, see: Sona et al. (1998); Cai et al. (1997); Toshima et al. (2003); Benbow et al. (2007); Sarges et al. (1990); Smits et al. (2008); Tandon et al. (2006).graphic file with name e-66-o3224-scheme1.jpg

Experimental

Crystal data

  • C13H14N2O3

  • M r = 246.26

  • Monoclinic, Inline graphic

  • a = 8.3138 (6) Å

  • b = 13.6868 (8) Å

  • c = 10.8189 (8) Å

  • β = 102.002 (3)°

  • V = 1204.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.29 × 0.23 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.965, T max = 0.978

  • 11123 measured reflections

  • 2938 independent reflections

  • 1370 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.216

  • S = 0.96

  • 2938 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047094/hb5740sup1.cif

e-66-o3224-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047094/hb5740Isup2.hkl

e-66-o3224-Isup2.hkl (141.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.96 (6) 1.87 (6) 2.827 (3) 179 (5)
C3—H3⋯O3ii 0.93 2.51 3.426 (4) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the HEC (Higher Education Commission of Pakistan) for the financial support of this work.

supplementary crystallographic information

Comment

Benzopyrazine constitute an important class of nitrogen containing heterocyclic compounds. Literature has shown that these compounds possess a vide variety of applications from pharmaceutical to agricultural fields. Several benzopyrazines have been reported as anti-bacterial (Sona et al., 1998), anti-convulsant(Cai et al., 1997), anti-cancer (Toshima et al., 2003), antidiabetic(Benbow et al., 2007), antidepressant(Sarges et al., 1990), antifungal(Tandon et al., 2006), anti-inflammatory (Smits et al., 2008), etc. The present work is based on the synthesis of pyrazines derivatives which may possess enhanced pharmaceutical activities.

The title compound (I) is structurally looks like planer but the dihedral angle between the two fused rings i.e. aromatic ring (C1/C2/C3/C4/C5/C6) and pyrazine ring (C1/C6/N1/N2/C7/C8) is 1.46 (11)%. The planer ester moiety attached to the C8 is oriented at dihedral angle of 5.70 (14)% and 7.13 (13)% with respect to the aomatic and pyrazine rings respectively. The cyclic carboxamide functional group from the pyrazine rings forms dimers through N—H···O type hydrogen bonding interaction which further connects through weak C—H···O type hydrogen bonding interaction to form the polymeric chain along b axes (Fig. 2 Table 1).

Experimental

To the suspension of 3-(3-oxo-3,4-dihydroquinoxalin-2-yl)propanoic acid (Taylor et al., 1965) (5 g, 0.023 mol) in absolute ethanol (100 ml) was added 3N H2SO4 (10 ml) and reaction mixture was refluxed for four hours. Solution was then concentrated under reduced pressure and neutralized with sodium bicarbonate solution to dissolve any unreacted acid. The precipitates were filtered under reduced pressure and washed with excess of water. The resulting ester was then recrystallized in absolute ethanol to yield colourless needles of (I). The product melted at 173-175 C (lit mp 160-162 C). (95% yield).

Refinement

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å , C—H = 0.96 Å and C—H = 0.97 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene and Uiso(H) = 1.5Ueq(C) for methyl C atoms. The N—H H atom were located in difference map with C—H = 0.96 Å with Uiso(H) = 1.2 Ueq(N). The reflection (011) was omitted during refinement as it was obscured by the beam stop.

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Unit cell packing diagram showing the hydrogen bonding using dashed lines, the hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C13H14N2O3 F(000) = 520
Mr = 246.26 Dx = 1.358 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1697 reflections
a = 8.3138 (6) Å θ = 2.8–24.6°
b = 13.6868 (8) Å µ = 0.10 mm1
c = 10.8189 (8) Å T = 296 K
β = 102.002 (3)° Cut needle, colourless
V = 1204.16 (14) Å3 0.37 × 0.29 × 0.23 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2938 independent reflections
Radiation source: fine-focus sealed tube 1370 reflections with I > 2σ(I)
graphite Rint = 0.060
φ and ω scans θmax = 28.3°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.965, Tmax = 0.978 k = −11→18
11123 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0982P)2 + 0.5331P] where P = (Fo2 + 2Fc2)/3
2938 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.5708 (3) 0.81339 (16) 0.0220 (2) 0.0448 (6)
C6 0.3369 (3) 0.70659 (19) −0.0524 (3) 0.0427 (7)
C1 0.4043 (3) 0.79969 (19) −0.0334 (3) 0.0436 (7)
C8 0.6615 (3) 0.73747 (19) 0.0532 (3) 0.0423 (7)
C5 0.1719 (4) 0.6942 (2) −0.1080 (3) 0.0534 (8)
H5 0.1271 0.6318 −0.1199 0.064*
N1 0.4382 (3) 0.62700 (17) −0.0166 (2) 0.0478 (7)
O3 1.1357 (2) 0.94521 (16) 0.1990 (3) 0.0763 (8)
C7 0.5997 (3) 0.63615 (19) 0.0353 (3) 0.0448 (7)
C2 0.3048 (3) 0.8807 (2) −0.0717 (3) 0.0518 (8)
H2 0.3487 0.9433 −0.0600 0.062*
C9 0.8402 (3) 0.7474 (2) 0.1117 (3) 0.0485 (8)
H9A 0.9034 0.7137 0.0589 0.058*
H9B 0.8613 0.7151 0.1933 0.058*
C10 0.9003 (3) 0.8516 (2) 0.1298 (3) 0.0503 (8)
H10A 0.8863 0.8834 0.0481 0.060*
H10B 0.8348 0.8868 0.1797 0.060*
O1 0.6900 (2) 0.56381 (14) 0.0636 (2) 0.0593 (7)
C11 1.0773 (4) 0.8557 (2) 0.1947 (3) 0.0563 (9)
O2 1.1589 (3) 0.78799 (19) 0.2404 (3) 0.0934 (10)
C3 0.1417 (4) 0.8677 (2) −0.1268 (3) 0.0591 (9)
H3 0.0754 0.9219 −0.1518 0.071*
C12 1.3079 (4) 0.9554 (3) 0.2601 (4) 0.0911 (14)
H12A 1.3271 0.9249 0.3428 0.109*
H12B 1.3760 0.9226 0.2102 0.109*
C4 0.0752 (4) 0.7746 (2) −0.1455 (3) 0.0577 (9)
H4 −0.0351 0.7667 −0.1834 0.069*
C13 1.3500 (6) 1.0526 (4) 0.2726 (6) 0.131 (2)
H13C 1.3410 1.0811 0.1904 0.196*
H13A 1.4611 1.0587 0.3193 0.196*
H13B 1.2773 1.0858 0.3169 0.196*
H1N 0.394 (6) 0.562 (5) −0.033 (5) 0.157*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0344 (13) 0.0382 (13) 0.0576 (16) −0.0021 (10) −0.0004 (11) 0.0004 (11)
C6 0.0340 (15) 0.0374 (15) 0.0542 (18) 0.0006 (12) 0.0034 (13) 0.0025 (13)
C1 0.0362 (16) 0.0384 (16) 0.0526 (18) 0.0021 (12) 0.0010 (13) 0.0010 (13)
C8 0.0357 (15) 0.0362 (15) 0.0507 (17) 0.0023 (11) −0.0009 (13) 0.0001 (13)
C5 0.0374 (17) 0.0458 (18) 0.073 (2) −0.0046 (13) 0.0014 (15) −0.0021 (15)
N1 0.0332 (13) 0.0357 (13) 0.0680 (17) −0.0008 (10) −0.0049 (11) 0.0009 (11)
O3 0.0340 (12) 0.0536 (14) 0.127 (2) −0.0050 (10) −0.0155 (12) −0.0091 (14)
C7 0.0396 (16) 0.0347 (15) 0.0564 (19) −0.0002 (12) 0.0015 (14) −0.0025 (13)
C2 0.0428 (18) 0.0371 (16) 0.071 (2) 0.0018 (12) 0.0008 (15) 0.0003 (14)
C9 0.0339 (16) 0.0423 (16) 0.065 (2) 0.0019 (12) −0.0004 (14) −0.0012 (14)
C10 0.0336 (16) 0.0424 (17) 0.069 (2) 0.0006 (12) −0.0035 (14) 0.0018 (15)
O1 0.0428 (12) 0.0353 (11) 0.0905 (17) 0.0076 (9) −0.0075 (11) −0.0010 (10)
C11 0.0356 (16) 0.052 (2) 0.074 (2) 0.0011 (14) −0.0057 (15) −0.0044 (16)
O2 0.0467 (15) 0.0687 (17) 0.143 (3) 0.0075 (12) −0.0295 (15) 0.0194 (16)
C3 0.0420 (18) 0.0458 (18) 0.083 (2) 0.0102 (14) −0.0017 (16) 0.0066 (16)
C12 0.038 (2) 0.081 (3) 0.138 (4) −0.0081 (18) −0.020 (2) −0.014 (3)
C4 0.0324 (16) 0.055 (2) 0.081 (2) 0.0031 (13) 0.0010 (15) 0.0037 (17)
C13 0.078 (3) 0.088 (4) 0.207 (6) −0.031 (3) −0.015 (3) −0.020 (4)

Geometric parameters (Å, °)

N2—C8 1.287 (3) C9—C10 1.511 (4)
N2—C1 1.402 (3) C9—H9A 0.9700
C6—N1 1.382 (3) C9—H9B 0.9700
C6—C5 1.389 (4) C10—C11 1.494 (4)
C6—C1 1.390 (4) C10—H10A 0.9700
C1—C2 1.394 (4) C10—H10B 0.9700
C8—C7 1.478 (4) C11—O2 1.193 (4)
C8—C9 1.495 (4) C3—C4 1.387 (4)
C5—C4 1.373 (4) C3—H3 0.9300
C5—H5 0.9300 C12—C13 1.375 (6)
N1—C7 1.349 (3) C12—H12A 0.9700
N1—H1N 0.96 (6) C12—H12B 0.9700
O3—C11 1.316 (4) C4—H4 0.9300
O3—C12 1.453 (4) C13—H13C 0.9600
C7—O1 1.242 (3) C13—H13A 0.9600
C2—C3 1.375 (4) C13—H13B 0.9600
C2—H2 0.9300
C8—N2—C1 118.5 (2) H9A—C9—H9B 107.6
N1—C6—C5 121.0 (2) C11—C10—C9 111.3 (2)
N1—C6—C1 118.5 (2) C11—C10—H10A 109.4
C5—C6—C1 120.5 (3) C9—C10—H10A 109.4
C6—C1—C2 119.3 (3) C11—C10—H10B 109.4
C6—C1—N2 121.2 (2) C9—C10—H10B 109.4
C2—C1—N2 119.5 (2) H10A—C10—H10B 108.0
N2—C8—C7 123.6 (3) O2—C11—O3 122.4 (3)
N2—C8—C9 121.0 (2) O2—C11—C10 125.8 (3)
C7—C8—C9 115.4 (2) O3—C11—C10 111.8 (3)
C4—C5—C6 119.7 (3) C2—C3—C4 120.6 (3)
C4—C5—H5 120.2 C2—C3—H3 119.7
C6—C5—H5 120.2 C4—C3—H3 119.7
C7—N1—C6 122.6 (2) C13—C12—O3 110.1 (4)
C7—N1—H1N 118 (3) C13—C12—H12A 109.6
C6—N1—H1N 119 (3) O3—C12—H12A 109.6
C11—O3—C12 115.2 (3) C13—C12—H12B 109.6
O1—C7—N1 121.8 (2) O3—C12—H12B 109.6
O1—C7—C8 122.7 (3) H12A—C12—H12B 108.2
N1—C7—C8 115.5 (2) C5—C4—C3 120.1 (3)
C3—C2—C1 119.8 (3) C5—C4—H4 119.9
C3—C2—H2 120.1 C3—C4—H4 119.9
C1—C2—H2 120.1 C12—C13—H13C 109.5
C8—C9—C10 114.4 (2) C12—C13—H13A 109.5
C8—C9—H9A 108.7 H13C—C13—H13A 109.5
C10—C9—H9A 108.7 C12—C13—H13B 109.5
C8—C9—H9B 108.7 H13C—C13—H13B 109.5
C10—C9—H9B 108.7 H13A—C13—H13B 109.5
N1—C6—C1—C2 178.5 (3) N2—C8—C7—N1 −0.2 (4)
C5—C6—C1—C2 −0.4 (5) C9—C8—C7—N1 179.5 (3)
N1—C6—C1—N2 −0.8 (4) C6—C1—C2—C3 0.4 (5)
C5—C6—C1—N2 −179.7 (3) N2—C1—C2—C3 179.6 (3)
C8—N2—C1—C6 1.3 (4) N2—C8—C9—C10 0.1 (4)
C8—N2—C1—C2 −177.9 (3) C7—C8—C9—C10 −179.6 (3)
C1—N2—C8—C7 −0.8 (4) C8—C9—C10—C11 177.0 (3)
C1—N2—C8—C9 179.5 (3) C12—O3—C11—O2 1.7 (5)
N1—C6—C5—C4 −178.4 (3) C12—O3—C11—C10 −179.6 (3)
C1—C6—C5—C4 0.5 (5) C9—C10—C11—O2 −8.1 (5)
C5—C6—N1—C7 178.6 (3) C9—C10—C11—O3 173.2 (3)
C1—C6—N1—C7 −0.3 (4) C1—C2—C3—C4 −0.4 (5)
C6—N1—C7—O1 −177.9 (3) C11—O3—C12—C13 −172.8 (4)
C6—N1—C7—C8 0.8 (4) C6—C5—C4—C3 −0.5 (5)
N2—C8—C7—O1 178.5 (3) C2—C3—C4—C5 0.5 (5)
C9—C8—C7—O1 −1.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.96 (6) 1.87 (6) 2.827 (3) 179 (5)
C3—H3···O3ii 0.93 2.51 3.426 (4) 170

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5740).

References

  1. Benbow, J. W., Chu-Moyer, Y. M. & Kung, D. W. (2007). Patent No. US 7 202 245 B2,
  2. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cai, S. X., Huang, J. C., Espitia, S. A., Tran, M., Ilyin, V. I., Hawkinson, J. E., Woodward, R. M., Weber, E. & Keana, F. M. (1997). J Med. Chem.40, 3679–3686. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Sarges, R., Howard, H. R., Browne, R. G., Lebel, L. A., Seymour, P. A. & Koe, B. K. (1990). J. Med. Chem.33, 2240–2254. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & de Esch, T. J. P. (2008). J. Med. Chem.51, 2457–2467. [DOI] [PubMed]
  9. Sona, P., Carta, A. Loriga, M., Zanetti, S., & Sechi, L. (1998). Farmaco, 53, 455–461. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K. & Shukla, P. K. (2006). Bioorg. Med. Chem. Lett.14, 6120–6126. [DOI] [PubMed]
  12. Taylor, E. C., McKillop, A. & Ross, R. E. (1965). J. Am. Chem. Soc.87, 1990–1995.
  13. Toshima, K., Kimura, T., Takano, O. T., Shima, Y., Umerzawa, K. & Matsumura, S. (2003). Tetrahedron, 59, 7057–7067.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047094/hb5740sup1.cif

e-66-o3224-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047094/hb5740Isup2.hkl

e-66-o3224-Isup2.hkl (141.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES