Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):o3312–o3313. doi: 10.1107/S1600536810048476

(E)-3-(Anthracen-9-yl)-1-(2-bromo­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Thawanrat Kobkeatthawin b, Jaruwan Joothamongkhon b, Suchada Chantrapromma b,§
PMCID: PMC3011387  PMID: 21589590

Abstract

The mol­ecule of the title chalcone, C23H15BrO, is not planar and exists in the E configuration with respect to the central C=C bond. The dihedral angle between the benzene and anthracene rings is 83.58 (6)°. The prop-2-en-1-one bridge makes dihedral angles of 63.00 (7) and 42.62 (16)° with the benzene and anthracene rings, respectively. In the crystal, mol­ecules are linked into dimers by weak C—H⋯O inter­actions. These dimers are arranged parallel to the bc plane and are further stacked along the a axis by π–π inter­actions with a centroid–centroid distance of 3.7561 (9) Å. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009); Joothamongkhon et al. (2010). For background to and applications of chalcones, see: Cheng et al. (2008); Gaber et al. (2008); Joothamongkhon et al. (2010); Nawakowska et al. (2008); Patil & Dharmaprakash (2008); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).graphic file with name e-66-o3312-scheme1.jpg

Experimental

Crystal data

  • C23H15BrO

  • M r = 387.25

  • Orthorhombic, Inline graphic

  • a = 7.8631 (1) Å

  • b = 20.0583 (3) Å

  • c = 20.7259 (3) Å

  • V = 3268.90 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 100 K

  • 0.34 × 0.28 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.482, T max = 0.629

  • 22332 measured reflections

  • 4766 independent reflections

  • 3717 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.073

  • S = 1.02

  • 4766 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048476/rz2527sup1.cif

e-66-o3312-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048476/rz2527Isup2.hkl

e-66-o3312-Isup2.hkl (233.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.53 3.301 (2) 140
C15—H15ACg1ii 0.93 2.99 3.6989 (19) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose (grant No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Chalcones have been studied for their chemical and biological activities for a long time. They have a wide range of applications such as in non-linear optical devices (Patil & Dharmaprakash, 2008) and have various biological properties such as analgesic, anti-inflammatory, antibacterial, antifungal (Nawakowska et al., 2008; Cheng et al., 2008) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. Moreover, chalcones have also been studied for fluorescent property (Gaber et al., 2008). Our previous investigation has revealed that chalcones containing the anthracene moiety displayed fluorescent property (Joothamongkhon et al., 2010). The title compound (I) was synthesized for further investigation of its fluorescent properties. The title compound in chloroform solution exhibited fluorescence with the maximum emission at 450 nm when it was excited at 380 nm.

The molecule of (I) (Fig. 1) exists in an E configuration with respect to the C8═C9 double bond [1.343 (2)°], with the torsion angle C7–C8–C9–C10 = 174.24 (16)°. The anthracene unit is essentially planar with the r.m.s. 0.0416 (2) Å. The molecule is not planar as indicated by the dihedral angle between benzene and anthracene rings of 83.58 (6)°. The mean plane through the pro-2-en-1-one bridge (C7–C9/O1) [r.m.s. 0.0283 (2) Å] makes dihedral angles of 63.00 (7) and 42.62 (16)° with the benzene and anthracene rings, respectively. The bond distances are of normal values (Allen et al., 1987) and are comparable with those of related structures (Fun et al., 2009; Joothamongkhon et al., 2010).

In the crystal packing, the molecules are linked into dimers through the C5—H5A···O1 interactions (Fig. 2). These dimers are arranged into sheets parallel to the bc plane, and are further stacked along the a axis by π–π interaction with a Cg2···Cg3 distance of 3.7561 (9) Å (symmetry code: -1/2 + x, y, 1/2 - z). The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C11/C16–C18/C23 and C11–C16 rings, respectively.

Experimental

The title compound was synthesized by condensation of 2-bromoacetophenone (0.39 g, 2 mmol) with anthracene-9-carboxaldehyde (0.41 g, 2 mmol) in ethanol (40 ml) in the presence of 20% NaOH (aq) (5 ml). After stirring for 7 h at room temperature, the yellow solid obtained was collected by filtration, washed with distilled water and dried in air. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after several days. Mp. 427–428 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for all H atoms. The highest residual electron density peak is located at 0.64 Å from C6 and the deepest hole is located at 0.38 Å from Br1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. C—H···O weak interactions are shown as dashed lines.

Crystal data

C23H15BrO Dx = 1.574 Mg m3
Mr = 387.25 Melting point = 427–428 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4766 reflections
a = 7.8631 (1) Å θ = 2.0–30.0°
b = 20.0583 (3) Å µ = 2.52 mm1
c = 20.7259 (3) Å T = 100 K
V = 3268.90 (8) Å3 Block, yellow
Z = 8 0.34 × 0.28 × 0.20 mm
F(000) = 1568

Data collection

Bruker APEXII CCD area-detector diffractometer 4766 independent reflections
Radiation source: sealed tube 3717 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→9
Tmin = 0.482, Tmax = 0.629 k = −28→21
22332 measured reflections l = −26→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.3057P] where P = (Fo2 + 2Fc2)/3
4766 reflections (Δ/σ)max = 0.002
226 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.28035 (2) 0.124729 (8) 0.534873 (8) 0.01848 (6)
O1 −0.02804 (17) 0.24813 (6) 0.51069 (6) 0.0207 (3)
C1 −0.0478 (2) 0.09958 (8) 0.53816 (8) 0.0141 (3)
C2 −0.0051 (2) 0.04186 (8) 0.57118 (8) 0.0182 (3)
H2A −0.0883 0.0173 0.5925 0.022*
C3 0.1634 (2) 0.02107 (9) 0.57209 (8) 0.0187 (3)
H3A 0.1936 −0.0173 0.5946 0.022*
C4 0.2868 (2) 0.05739 (9) 0.53953 (8) 0.0169 (3)
H4A 0.3991 0.0429 0.5396 0.020*
C5 0.2427 (2) 0.11522 (8) 0.50691 (8) 0.0148 (3)
H5A 0.3260 0.1393 0.4852 0.018*
C6 0.0743 (2) 0.13775 (8) 0.50626 (7) 0.0130 (3)
C7 0.0308 (2) 0.20401 (8) 0.47631 (7) 0.0144 (3)
C8 0.0571 (2) 0.21502 (8) 0.40715 (8) 0.0152 (3)
H8A 0.0380 0.2577 0.3913 0.018*
C9 0.1067 (2) 0.16805 (8) 0.36499 (8) 0.0143 (3)
H9A 0.1357 0.1266 0.3817 0.017*
C10 0.1193 (2) 0.17648 (8) 0.29459 (7) 0.0136 (3)
C11 0.1861 (2) 0.23539 (8) 0.26620 (8) 0.0146 (3)
C12 0.2644 (2) 0.28787 (8) 0.30234 (9) 0.0172 (3)
H12A 0.2765 0.2832 0.3467 0.021*
C13 0.3216 (2) 0.34451 (9) 0.27314 (9) 0.0210 (4)
H13A 0.3715 0.3779 0.2978 0.025*
C14 0.3059 (2) 0.35296 (9) 0.20539 (9) 0.0227 (4)
H14A 0.3417 0.3924 0.1861 0.027*
C15 0.2388 (2) 0.30366 (9) 0.16882 (9) 0.0211 (4)
H15A 0.2303 0.3095 0.1244 0.025*
C16 0.1807 (2) 0.24275 (8) 0.19713 (8) 0.0168 (3)
C17 0.1193 (2) 0.19111 (8) 0.15893 (8) 0.0184 (3)
H17A 0.1169 0.1964 0.1144 0.022*
C18 0.0612 (2) 0.13157 (8) 0.18586 (8) 0.0161 (3)
C19 0.0007 (2) 0.07806 (9) 0.14641 (8) 0.0206 (4)
H19A 0.0033 0.0825 0.1018 0.025*
C20 −0.0605 (2) 0.02092 (9) 0.17272 (9) 0.0213 (4)
H20A −0.0984 −0.0134 0.1462 0.026*
C21 −0.0666 (2) 0.01375 (9) 0.24085 (9) 0.0208 (4)
H21A −0.1095 −0.0252 0.2589 0.025*
C22 −0.0101 (2) 0.06361 (8) 0.28000 (8) 0.0178 (3)
H22A −0.0167 0.0581 0.3245 0.021*
C23 0.0591 (2) 0.12412 (8) 0.25471 (8) 0.0143 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01349 (9) 0.01896 (9) 0.02300 (10) 0.00166 (6) 0.00026 (7) 0.00057 (7)
O1 0.0275 (7) 0.0153 (6) 0.0193 (6) 0.0025 (5) 0.0052 (5) −0.0013 (5)
C1 0.0132 (8) 0.0144 (7) 0.0146 (8) 0.0010 (6) −0.0003 (6) −0.0014 (6)
C2 0.0190 (9) 0.0186 (8) 0.0168 (8) −0.0012 (7) 0.0029 (7) 0.0039 (6)
C3 0.0209 (9) 0.0175 (8) 0.0175 (8) 0.0021 (7) −0.0002 (7) 0.0039 (6)
C4 0.0156 (8) 0.0187 (8) 0.0165 (8) 0.0013 (6) −0.0001 (7) −0.0009 (6)
C5 0.0171 (9) 0.0150 (8) 0.0124 (7) −0.0016 (6) 0.0015 (6) −0.0012 (6)
C6 0.0166 (8) 0.0130 (7) 0.0094 (7) −0.0002 (6) −0.0005 (6) −0.0015 (5)
C7 0.0149 (8) 0.0136 (7) 0.0147 (8) −0.0022 (6) 0.0004 (6) 0.0003 (6)
C8 0.0164 (8) 0.0145 (8) 0.0147 (8) 0.0008 (6) −0.0001 (6) 0.0030 (6)
C9 0.0150 (8) 0.0148 (7) 0.0131 (7) −0.0006 (6) −0.0012 (6) 0.0036 (6)
C10 0.0139 (8) 0.0152 (8) 0.0117 (7) 0.0030 (6) 0.0006 (6) 0.0015 (6)
C11 0.0128 (8) 0.0163 (8) 0.0148 (8) 0.0038 (6) 0.0016 (6) 0.0031 (6)
C12 0.0169 (8) 0.0178 (8) 0.0170 (8) 0.0024 (6) 0.0024 (6) 0.0021 (6)
C13 0.0168 (9) 0.0181 (9) 0.0280 (9) −0.0003 (7) 0.0030 (7) 0.0005 (7)
C14 0.0196 (10) 0.0196 (8) 0.0290 (10) 0.0019 (7) 0.0065 (7) 0.0099 (7)
C15 0.0213 (9) 0.0243 (9) 0.0178 (8) 0.0060 (7) 0.0052 (7) 0.0097 (7)
C16 0.0144 (8) 0.0201 (8) 0.0159 (8) 0.0049 (6) 0.0028 (6) 0.0054 (6)
C17 0.0183 (9) 0.0248 (9) 0.0122 (8) 0.0071 (7) 0.0022 (6) 0.0044 (6)
C18 0.0158 (8) 0.0201 (8) 0.0122 (7) 0.0047 (6) 0.0007 (6) 0.0007 (6)
C19 0.0201 (9) 0.0283 (9) 0.0134 (8) 0.0065 (7) −0.0030 (7) −0.0044 (7)
C20 0.0207 (9) 0.0220 (8) 0.0212 (9) 0.0038 (7) −0.0029 (7) −0.0074 (7)
C21 0.0179 (9) 0.0191 (8) 0.0254 (9) −0.0002 (7) 0.0002 (7) 0.0004 (7)
C22 0.0179 (9) 0.0185 (8) 0.0169 (8) 0.0015 (6) 0.0001 (6) 0.0021 (6)
C23 0.0130 (8) 0.0170 (8) 0.0128 (7) 0.0045 (6) −0.0001 (6) 0.0019 (6)

Geometric parameters (Å, °)

Br1—C1 1.8983 (17) C12—C13 1.364 (2)
O1—C7 1.2269 (19) C12—H12A 0.9300
C1—C2 1.386 (2) C13—C14 1.420 (3)
C1—C6 1.395 (2) C13—H13A 0.9300
C2—C3 1.389 (2) C14—C15 1.353 (3)
C2—H2A 0.9300 C14—H14A 0.9300
C3—C4 1.388 (2) C15—C16 1.430 (2)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.387 (2) C16—C17 1.390 (2)
C4—H4A 0.9300 C17—C18 1.395 (2)
C5—C6 1.399 (2) C17—H17A 0.9300
C5—H5A 0.9300 C18—C19 1.431 (2)
C6—C7 1.506 (2) C18—C23 1.435 (2)
C7—C8 1.465 (2) C19—C20 1.357 (3)
C8—C9 1.343 (2) C19—H19A 0.9300
C8—H8A 0.9300 C20—C21 1.420 (2)
C9—C10 1.472 (2) C20—H20A 0.9300
C9—H9A 0.9300 C21—C22 1.362 (2)
C10—C23 1.418 (2) C21—H21A 0.9300
C10—C11 1.421 (2) C22—C23 1.430 (2)
C11—C12 1.431 (2) C22—H22A 0.9300
C11—C16 1.440 (2)
C2—C1—C6 121.74 (16) C11—C12—H12A 119.3
C2—C1—Br1 118.21 (13) C12—C13—C14 120.64 (17)
C6—C1—Br1 120.02 (12) C12—C13—H13A 119.7
C1—C2—C3 119.22 (16) C14—C13—H13A 119.7
C1—C2—H2A 120.4 C15—C14—C13 120.04 (16)
C3—C2—H2A 120.4 C15—C14—H14A 120.0
C4—C3—C2 120.15 (16) C13—C14—H14A 120.0
C4—C3—H3A 119.9 C14—C15—C16 121.28 (17)
C2—C3—H3A 119.9 C14—C15—H15A 119.4
C5—C4—C3 120.10 (16) C16—C15—H15A 119.4
C5—C4—H4A 120.0 C17—C16—C15 120.92 (16)
C3—C4—H4A 120.0 C17—C16—C11 120.00 (15)
C4—C5—C6 120.76 (15) C15—C16—C11 119.08 (16)
C4—C5—H5A 119.6 C16—C17—C18 121.58 (15)
C6—C5—H5A 119.6 C16—C17—H17A 119.2
C1—C6—C5 118.00 (15) C18—C17—H17A 119.2
C1—C6—C7 121.57 (15) C17—C18—C19 121.51 (15)
C5—C6—C7 120.25 (15) C17—C18—C23 119.39 (15)
O1—C7—C8 120.84 (14) C19—C18—C23 119.09 (15)
O1—C7—C6 118.86 (14) C20—C19—C18 121.46 (16)
C8—C7—C6 120.29 (14) C20—C19—H19A 119.3
C9—C8—C7 124.87 (15) C18—C19—H19A 119.3
C9—C8—H8A 117.6 C19—C20—C21 119.79 (16)
C7—C8—H8A 117.6 C19—C20—H20A 120.1
C8—C9—C10 125.72 (15) C21—C20—H20A 120.1
C8—C9—H9A 117.1 C22—C21—C20 120.45 (17)
C10—C9—H9A 117.1 C22—C21—H21A 119.8
C23—C10—C11 119.88 (14) C20—C21—H21A 119.8
C23—C10—C9 118.06 (14) C21—C22—C23 121.94 (16)
C11—C10—C9 122.05 (14) C21—C22—H22A 119.0
C10—C11—C12 123.65 (15) C23—C22—H22A 119.0
C10—C11—C16 119.09 (15) C10—C23—C22 122.83 (15)
C12—C11—C16 117.23 (15) C10—C23—C18 119.92 (14)
C13—C12—C11 121.50 (16) C22—C23—C18 117.22 (15)
C13—C12—H12A 119.3
C6—C1—C2—C3 −0.6 (3) C12—C13—C14—C15 −2.3 (3)
Br1—C1—C2—C3 177.50 (13) C13—C14—C15—C16 0.8 (3)
C1—C2—C3—C4 −0.8 (3) C14—C15—C16—C17 −176.97 (17)
C2—C3—C4—C5 1.1 (3) C14—C15—C16—C11 3.2 (3)
C3—C4—C5—C6 0.0 (2) C10—C11—C16—C17 −3.5 (2)
C2—C1—C6—C5 1.7 (2) C12—C11—C16—C17 174.62 (15)
Br1—C1—C6—C5 −176.39 (12) C10—C11—C16—C15 176.38 (15)
C2—C1—C6—C7 −173.58 (15) C12—C11—C16—C15 −5.5 (2)
Br1—C1—C6—C7 8.4 (2) C15—C16—C17—C18 −179.59 (16)
C4—C5—C6—C1 −1.4 (2) C11—C16—C17—C18 0.2 (3)
C4—C5—C6—C7 173.95 (15) C16—C17—C18—C19 −178.97 (16)
C1—C6—C7—O1 58.3 (2) C16—C17—C18—C23 2.2 (3)
C5—C6—C7—O1 −116.82 (18) C17—C18—C19—C20 −178.01 (17)
C1—C6—C7—C8 −121.07 (17) C23—C18—C19—C20 0.8 (3)
C5—C6—C7—C8 63.8 (2) C18—C19—C20—C21 0.6 (3)
O1—C7—C8—C9 −173.96 (17) C19—C20—C21—C22 −0.6 (3)
C6—C7—C8—C9 5.4 (3) C20—C21—C22—C23 −0.9 (3)
C7—C8—C9—C10 174.24 (16) C11—C10—C23—C22 −179.81 (15)
C8—C9—C10—C23 −137.39 (17) C9—C10—C23—C22 −1.0 (2)
C8—C9—C10—C11 41.4 (3) C11—C10—C23—C18 −1.8 (2)
C23—C10—C11—C12 −173.75 (15) C9—C10—C23—C18 176.97 (15)
C9—C10—C11—C12 7.5 (2) C21—C22—C23—C10 −179.72 (16)
C23—C10—C11—C16 4.2 (2) C21—C22—C23—C18 2.2 (2)
C9—C10—C11—C16 −174.54 (15) C17—C18—C23—C10 −1.4 (2)
C10—C11—C12—C13 −177.81 (16) C19—C18—C23—C10 179.73 (15)
C16—C11—C12—C13 4.2 (2) C17—C18—C23—C22 176.71 (15)
C11—C12—C13—C14 −0.4 (3) C19—C18—C23—C22 −2.2 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C5—H5A···O1i 0.93 2.53 3.301 (2) 140
C15—H15A···Cg1ii 0.93 2.99 3.6989 (19) 135

Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x−1/2, y−1/2, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2527).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cheng, J. H., Hung, C.-F., Yang, S. C., Wang, J.-P., Won, S.-J. & Lin, S.-J. (2008). Bioorg. Med. Chem 16, 7270–7276. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169. [DOI] [PMC free article] [PubMed]
  6. Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Technol.40, 528–537.
  7. Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669–o2670. [DOI] [PMC free article] [PubMed]
  8. Nawakowska, Z., Kedzia, B. & Schroeder, G. (2008). Eur. J. Med. Chem.43, 707–713. [DOI] [PubMed]
  9. Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett.62, 451–453.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol, 25, 503–508.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048476/rz2527sup1.cif

e-66-o3312-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048476/rz2527Isup2.hkl

e-66-o3312-Isup2.hkl (233.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES