Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):o3106. doi: 10.1107/S160053681004448X

(E)-2,4-Dichloro-6-{1-[(2-chloro­eth­yl)imino]­eth­yl}phenol

Yong-Sheng Xie a,*, Wen-Liang Dong b, Li-Ping He a, Xin-Ling Zhang c, Bao-Xiang Zhao d
PMCID: PMC3011393  PMID: 21589412

Abstract

The title Schiff base compound, C10H10Cl3NO, was prepared by the condensation of 1-(3,5-dichloro-2-hy­droxy­phen­yl)ethanone with chloro­ethyl­amine. The imine adopts an E configuration with respect to the C=N bond. The H atom of the phenolic OH group is disordered over two positions with site occupation factors of 0.52 (7) and 0.48 (7), respectively, and the major occupancy component is involved in an intramolecular N—H⋯O hydrogen bond. The compound therefore exists in an iminium–phenolate as well as in the imino–phenol form. In the crystal, mol­ecules are connected by C—H⋯O and C—H⋯Cl hydrogen bonds and Cl⋯Cl inter­actions [3.7864 (9) Å] into a three-dimensional network. In addition, inter­molecular π–π stacking inter­actions [centroid–centroid distance = 4.4312 (9) Å] are observed.

Related literature

For a related structure, see: Wang et al. (2010). For applications of Schiff base ligands, see: Yin et al. (2004); Böhme & Günther (2007).graphic file with name e-66-o3106-scheme1.jpg

Experimental

Crystal data

  • C10H10Cl3NO

  • M r = 266.54

  • Monoclinic, Inline graphic

  • a = 14.5710 (2) Å

  • b = 10.2323 (2) Å

  • c = 7.7384 (1) Å

  • β = 94.376 (1)°

  • V = 1150.39 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 296 K

  • 0.38 × 0.19 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.762, T max = 0.951

  • 8253 measured reflections

  • 2625 independent reflections

  • 1940 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.091

  • S = 1.02

  • 2625 reflections

  • 146 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004448X/im2238sup1.cif

e-66-o3106-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004448X/im2238Isup2.hkl

e-66-o3106-Isup2.hkl (128.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.88 (2) 1.68 (2) 2.479 (2) 150 (4)
C10—H10B⋯O1i 0.97 2.48 3.416 (2) 159
C10—H10A⋯Cl3ii 0.97 2.86 3.621 (2) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported by the Natural Science Foundation of Shandong Province (Z2008B10).

supplementary crystallographic information

Comment

Schiff-base ligands have attracted much attention over the years, e.g. as ligands in organotin(IV) compounds owing to their anti-tumour activities (Yin et al., 2004), and in silicon complexes applied to the field of photovoltaic applications, as coloring material and due to their antimicrobial activity. (Böhme & Günther, 2007). We report here the crystal structure of the title Schiff-base ligand (Fig. 1).

The molecular structure of the ligand is represented in Fig. 1. The bond lengths and angles are in eligible range. The C7—N1 and C9—N1 bond lengths of 1.290 (2), 1.460 (2) Å, respectively, conform to the value for a double and single bonds and they are comparable with the corresponding bond lengths in similar Schiff-base compounds (Wang et al., 2010). The hydrogen atom of the phenolic OH group is disordered over two positions with site occupation factors of 0.52 and 0.48, respectively. The compound therefore exists in an iminium-phenolate as well as in an imino-phenol form. The situation may be interpreted as the intramolecular protonation of the basic imine nitrogen by the acidic phenol group. In the crystal, molecules are connected by C—H···O, C—H···Cl (Table 1) and Cl···Cl interactions [Cl1···Cl2 distance = 3.7864 (9) Å for symmetry operation -x + 1, -y + 1, -z; Cl2···Cl3 distance = 3.7709 (7) Å for symmetry operation -x + 2, y - 1/2, -z + 1/2; Cl2···Cl3 distance = 3.7789 (8) Å for symmetry operation -x + 2, -y + 1, -z] into a network (Fig. 2). In addition, weak intermolecular π–π interactions serve to stabilize the extended structure [Cg···Cg distance = 4.4312 (9) Å for symmetry operation x, -y + 1/2, z - 1/2 and x, -y + 1/2, z + 1/2 (The Cg is the centroid of the phenyl ring)].

Experimental

To a mixture of 1-(3,5-dichloro-2-hydroxy-phenyl)-ethanone (5.1 g, 25 mmol) and chloroethylamine hydrochloride (5.8 g, 50 mmol) in ethanol (150 ml) was added triethylamine (5.1 g, 50 mmol). The mixture was heated to reflux for 10 min. After being cooled to room temperature, the resulting precipitate was filtrated and washed with water to afford the product, E-2,4-dichloro-6-(1-(2-chloroethylimino)ethyl)phenol in 84% yield. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 7 d.

Refinement

All H atoms at carbon were placed geometrically and refined using a riding model with C—H = 0.97 Å (for CH2 group), 0.96 Å (for CH3 group) and 0.93 Å (for aryl H atoms). The isotropic atomic displacement parameters of hydrogen atoms were set to 1.5 × Ueq (CH3) and 1.2 × Ueq (CH2, CarH) of the parent atoms. Positions of hydrogen atoms at N1 and O1 were taken from difference Fourier maps and were refined using PART instructions.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of title compound viewed along the b axis. C—H···O and C—H···Cl hydrogen bonds are displayed as red and blue dashed lines, respectively. Cl···Cl interactions are shown as green dashed lines.

Fig. 3.

Fig. 3.

Crystal packing of title compound viewed along the c axis. The π–π interactions are shown as black dashed lines.

Crystal data

C10H10Cl3NO F(000) = 544
Mr = 266.54 Dx = 1.539 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2504 reflections
a = 14.5710 (2) Å θ = 2.4–25.9°
b = 10.2323 (2) Å µ = 0.77 mm1
c = 7.7384 (1) Å T = 296 K
β = 94.376 (1)° Plate, orange
V = 1150.39 (3) Å3 0.38 × 0.19 × 0.07 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2625 independent reflections
Radiation source: fine-focus sealed tube 1940 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −18→17
Tmin = 0.762, Tmax = 0.951 k = −10→13
8253 measured reflections l = −8→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.1559P] where P = (Fo2 + 2Fc2)/3
2625 reflections (Δ/σ)max = 0.006
146 parameters Δρmax = 0.25 e Å3
2 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.57736 (13) 0.15817 (19) −0.1505 (2) 0.0498 (4)
C2 0.61146 (13) 0.0340 (2) −0.1143 (2) 0.0516 (5)
H2 0.5771 −0.0395 −0.1481 0.062*
C3 0.69659 (12) 0.02119 (17) −0.0279 (2) 0.0455 (4)
C4 0.75065 (12) 0.12988 (16) 0.0289 (2) 0.0401 (4)
C5 0.71381 (12) 0.25627 (16) −0.0117 (2) 0.0388 (4)
C6 0.62665 (12) 0.26726 (18) −0.1027 (2) 0.0458 (4)
H6 0.6026 0.3495 −0.1303 0.055*
C7 0.76729 (12) 0.37256 (16) 0.0405 (2) 0.0403 (4)
C8 0.73432 (14) 0.50736 (18) −0.0072 (3) 0.0559 (5)
H8A 0.6689 0.5122 0.0002 0.084*
H8B 0.7487 0.5268 −0.1235 0.084*
H8C 0.7642 0.5696 0.0710 0.084*
C9 0.90715 (13) 0.45820 (17) 0.1910 (2) 0.0491 (4)
H9A 0.8749 0.5189 0.2611 0.059*
H9B 0.9276 0.5057 0.0925 0.059*
C10 0.98893 (13) 0.40380 (19) 0.2962 (2) 0.0509 (5)
H10A 0.9682 0.3582 0.3961 0.061*
H10B 1.0284 0.4752 0.3382 0.061*
Cl1 0.46922 (4) 0.17442 (7) −0.26165 (8) 0.0791 (2)
Cl2 0.74236 (4) −0.13318 (4) 0.01161 (8) 0.06643 (18)
Cl3 1.05345 (3) 0.29415 (5) 0.17400 (7) 0.05817 (16)
N1 0.84464 (10) 0.35378 (14) 0.12961 (19) 0.0418 (3)
H1N 0.858 (3) 0.271 (2) 0.146 (5) 0.049 (16)* 0.52 (7)
H1O 0.855 (3) 0.183 (3) 0.145 (6) 0.07 (2)* 0.48 (7)
O1 0.83069 (9) 0.11256 (12) 0.11379 (18) 0.0494 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0381 (10) 0.0583 (11) 0.0523 (10) −0.0039 (9) −0.0005 (8) 0.0049 (9)
C2 0.0472 (11) 0.0491 (10) 0.0583 (11) −0.0119 (9) 0.0041 (9) −0.0039 (9)
C3 0.0451 (10) 0.0370 (9) 0.0551 (10) −0.0010 (8) 0.0077 (8) −0.0016 (7)
C4 0.0392 (10) 0.0368 (8) 0.0450 (9) −0.0005 (7) 0.0069 (7) −0.0006 (7)
C5 0.0387 (9) 0.0364 (8) 0.0417 (9) −0.0005 (7) 0.0051 (7) 0.0023 (7)
C6 0.0421 (10) 0.0449 (10) 0.0506 (10) 0.0042 (8) 0.0041 (8) 0.0077 (8)
C7 0.0428 (10) 0.0360 (8) 0.0428 (9) 0.0027 (7) 0.0081 (7) 0.0028 (7)
C8 0.0577 (12) 0.0382 (9) 0.0709 (12) 0.0041 (9) −0.0014 (10) 0.0076 (9)
C9 0.0515 (11) 0.0348 (8) 0.0610 (11) −0.0068 (8) 0.0040 (9) −0.0030 (8)
C10 0.0561 (12) 0.0511 (10) 0.0450 (9) −0.0121 (9) 0.0002 (8) −0.0071 (8)
Cl1 0.0484 (3) 0.0859 (4) 0.0987 (4) −0.0121 (3) −0.0218 (3) 0.0179 (3)
Cl2 0.0629 (4) 0.0339 (2) 0.1020 (4) 0.0003 (2) 0.0030 (3) −0.0027 (2)
Cl3 0.0544 (3) 0.0519 (3) 0.0673 (3) 0.0025 (2) −0.0016 (2) −0.0059 (2)
N1 0.0448 (9) 0.0310 (7) 0.0493 (8) −0.0020 (6) 0.0019 (7) −0.0003 (6)
O1 0.0408 (7) 0.0350 (7) 0.0710 (8) 0.0018 (6) −0.0055 (6) 0.0007 (6)

Geometric parameters (Å, °)

C1—C6 1.363 (3) C7—C8 1.498 (2)
C1—C2 1.385 (3) C8—H8A 0.9600
C1—Cl1 1.7446 (19) C8—H8B 0.9600
C2—C3 1.370 (2) C8—H8C 0.9600
C2—H2 0.9300 C9—N1 1.460 (2)
C3—C4 1.413 (2) C9—C10 1.498 (3)
C3—Cl2 1.7326 (18) C9—H9A 0.9700
C4—O1 1.306 (2) C9—H9B 0.9700
C4—C5 1.426 (2) C10—Cl3 1.781 (2)
C5—C6 1.409 (2) C10—H10A 0.9700
C5—C7 1.462 (2) C10—H10B 0.9700
C6—H6 0.9300 N1—H1N 0.874 (19)
C7—N1 1.290 (2) O1—H1O 0.827 (19)
C6—C1—C2 121.53 (17) C7—C8—H8B 109.5
C6—C1—Cl1 119.55 (15) H8A—C8—H8B 109.5
C2—C1—Cl1 118.92 (15) C7—C8—H8C 109.5
C3—C2—C1 118.94 (17) H8A—C8—H8C 109.5
C3—C2—H2 120.5 H8B—C8—H8C 109.5
C1—C2—H2 120.5 N1—C9—C10 110.83 (15)
C2—C3—C4 122.61 (16) N1—C9—H9A 109.5
C2—C3—Cl2 119.69 (14) C10—C9—H9A 109.5
C4—C3—Cl2 117.69 (13) N1—C9—H9B 109.5
O1—C4—C3 120.31 (15) C10—C9—H9B 109.5
O1—C4—C5 122.71 (15) H9A—C9—H9B 108.1
C3—C4—C5 116.98 (15) C9—C10—Cl3 112.06 (12)
C6—C5—C4 119.49 (16) C9—C10—H10A 109.2
C6—C5—C7 120.94 (15) Cl3—C10—H10A 109.2
C4—C5—C7 119.56 (15) C9—C10—H10B 109.2
C1—C6—C5 120.43 (17) Cl3—C10—H10B 109.2
C1—C6—H6 119.8 H10A—C10—H10B 107.9
C5—C6—H6 119.8 C7—N1—C9 124.26 (15)
N1—C7—C5 116.87 (14) C7—N1—H1N 113 (3)
N1—C7—C8 121.32 (16) C9—N1—H1N 122 (3)
C5—C7—C8 121.82 (16) C4—O1—H1O 112 (4)
C7—C8—H8A 109.5
C6—C1—C2—C3 0.2 (3) C2—C1—C6—C5 −1.1 (3)
Cl1—C1—C2—C3 179.64 (14) Cl1—C1—C6—C5 179.53 (13)
C1—C2—C3—C4 1.1 (3) C4—C5—C6—C1 0.5 (3)
C1—C2—C3—Cl2 −177.60 (14) C7—C5—C6—C1 −179.91 (16)
C2—C3—C4—O1 178.66 (16) C6—C5—C7—N1 177.17 (15)
Cl2—C3—C4—O1 −2.6 (2) C4—C5—C7—N1 −3.3 (2)
C2—C3—C4—C5 −1.6 (3) C6—C5—C7—C8 −3.0 (3)
Cl2—C3—C4—C5 177.17 (12) C4—C5—C7—C8 176.56 (16)
O1—C4—C5—C6 −179.54 (15) N1—C9—C10—Cl3 60.56 (18)
C3—C4—C5—C6 0.7 (2) C5—C7—N1—C9 179.36 (15)
O1—C4—C5—C7 0.9 (3) C8—C7—N1—C9 −0.5 (3)
C3—C4—C5—C7 −178.81 (15) C10—C9—N1—C7 177.78 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.88 (2) 1.68 (2) 2.479 (2) 150 (4)
C10—H10B···O1i 0.97 2.48 3.416 (2) 159
C10—H10A···Cl3ii 0.97 2.86 3.621 (2) 136

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2238).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun.10, 482-484.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, C.-H., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2010). Acta Cryst. E66, o745. [DOI] [PMC free article] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  7. Yin, H. D., Wang, Q. B. & Xue, S. C. (2004). J. Organomet. Chem.689, 2480–2485.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004448X/im2238sup1.cif

e-66-o3106-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004448X/im2238Isup2.hkl

e-66-o3106-Isup2.hkl (128.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES