Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3152. doi: 10.1107/S1600536810045708

N-{4-[(3,4-Dimethyl­phen­yl)(eth­yl)sulfamo­yl]phen­yl}-N-ethyl­acetamide

Peter John a, Saima Khizar a, Islam Ullah Khan a,, Shahzad Sharif a, Edward R T Tiekink b,*
PMCID: PMC3011401  PMID: 21589450

Abstract

When viewed down the central S⋯N axis of the title compound, C20H26N2O3S, it is apparent that the mol­ecule adopts a gauche conformation with all O atoms lying to one side of the central benzene ring; the carbonyl O atom is directed away from the central ring and the N-bound ethyl groups lie to one side of the mol­ecule. Supra­molecular helical chains aligned along the b axis and sustained by C—H⋯O contacts feature in the crystal packing. These are consolidated in the three-dimensional structure by C—H⋯π inter­actions.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).graphic file with name e-66-o3152-scheme1.jpg

Experimental

Crystal data

  • C20H26N2O3S

  • M r = 374.51

  • Monoclinic, Inline graphic

  • a = 8.0882 (2) Å

  • b = 11.5978 (3) Å

  • c = 21.2717 (5) Å

  • β = 97.194 (1)°

  • V = 1979.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.28 × 0.14 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.692, T max = 0.895

  • 16612 measured reflections

  • 4079 independent reflections

  • 3325 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.122

  • S = 1.01

  • 4079 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045708/hg2743sup1.cif

e-66-o3152-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045708/hg2743Isup2.hkl

e-66-o3152-Isup2.hkl (195.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.54 3.455 (2) 170
C10—H10a⋯Cg1ii 0.96 2.93 3.728 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

In connection with on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992), the title compound, (I), was investigated.

With reference to the central benzene ring in (I), Fig. 1, the S1 [deviation = -0.068 (1) Å] and N2 [-0.005 (1) Å] atoms are co-planar. Both sulfonamide-O atoms lie to the same side of the plane as does the carbonyl-O atom, which is directed away from the ring, with the remaining substituents lying to the other side. When viewed down the S1···N2 vector, both N-bound ethyl groups lie to the same side of the molecule. Similarly, when viewed down the S1···N2 vector, the molecule has a gauche conformation.

In the crystal packing, molecules are connected into a helical supramolecular chain along the b axis via C—H···O contacts occurring between benzene-H and sulfonamide-O atoms, Table 1 and Fig. 2. The chains are consolidated in the crystal packing by C—H···π interactions, Table 1 and Fig. 3.

Experimental

A mixture of N-{4-[(3,4-dimethylphenyl)sulfamoyl]phenyl}acetamide 100 mg (0.314 mmol) and sodium hydride 85 mg (0.78 mmol) in N,N-dimethylformamide (10 ml) was stirred at room temperature for 30 min. followed by addition of ethyl iodide 199 µl (0.785 mmol). Stirring was continued for a further 3 h and the contents were poured over crushed ice. The precipitate that formed was isolated, washed and crystallized from methanol solution by slow evaporation; M.pt. 472 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). In the final refinement four low angle reflections evidently effected by the beam stop were omitted, i.e. (100), (002), (011) and (111).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain along the b axis in (I). The C—H···O contacts sustaining this chain are shown as orange dashed lines.

Fig. 3.

Fig. 3.

View in projection down the b axis of the unit-cell contents for (I). The C—H···O and C—H···π contacts are shown as orange and purple dashed lines, respectively.

Crystal data

C20H26N2O3S F(000) = 800
Mr = 374.51 Dx = 1.257 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7015 reflections
a = 8.0882 (2) Å θ = 3.0–27.8°
b = 11.5978 (3) Å µ = 0.19 mm1
c = 21.2717 (5) Å T = 293 K
β = 97.194 (1)° Block, colourless
V = 1979.69 (8) Å3 0.28 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4079 independent reflections
Radiation source: fine-focus sealed tube 3325 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.692, Tmax = 0.895 k = −14→11
16612 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.4585P] where P = (Fo2 + 2Fc2)/3
4079 reflections (Δ/σ)max = 0.001
240 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.12740 (5) 0.72075 (4) 0.249229 (18) 0.03937 (14)
O1 1.07590 (16) 0.82013 (10) 0.28110 (6) 0.0509 (3)
O2 1.25922 (15) 0.73062 (12) 0.21059 (6) 0.0536 (3)
O3 0.27644 (17) 0.53664 (14) 0.04014 (7) 0.0694 (4)
N1 1.18549 (16) 0.62329 (11) 0.30379 (6) 0.0376 (3)
N2 0.52634 (17) 0.52003 (13) 0.09842 (7) 0.0475 (4)
C1 1.2726 (2) 0.52088 (16) 0.28259 (8) 0.0476 (4)
H1A 1.1913 0.4620 0.2683 0.057*
H1B 1.3306 0.5419 0.2470 0.057*
C2 1.3933 (3) 0.4738 (2) 0.33407 (12) 0.0874 (8)
H2A 1.4686 0.5337 0.3505 0.131*
H2B 1.4551 0.4123 0.3178 0.131*
H2C 1.3347 0.4450 0.3673 0.131*
C3 1.06969 (18) 0.60395 (13) 0.34975 (7) 0.0339 (3)
C4 1.06258 (19) 0.68223 (14) 0.39837 (7) 0.0389 (3)
H4 1.1336 0.7456 0.4015 0.047*
C5 0.9517 (2) 0.66828 (15) 0.44270 (7) 0.0422 (4)
C6 0.8482 (2) 0.57149 (16) 0.43848 (8) 0.0442 (4)
C7 0.8584 (2) 0.49348 (15) 0.39000 (8) 0.0488 (4)
H7 0.7902 0.4286 0.3873 0.059*
C8 0.9669 (2) 0.50905 (14) 0.34545 (8) 0.0440 (4)
H8 0.9704 0.4559 0.3129 0.053*
C9 0.9443 (3) 0.7571 (2) 0.49396 (9) 0.0631 (5)
H9A 1.0265 0.8155 0.4903 0.095*
H9B 0.9660 0.7207 0.5347 0.095*
H9C 0.8355 0.7916 0.4896 0.095*
C10 0.7272 (3) 0.5500 (2) 0.48570 (10) 0.0673 (6)
H10A 0.7868 0.5468 0.5276 0.101*
H10B 0.6708 0.4781 0.4761 0.101*
H10C 0.6471 0.6114 0.4834 0.101*
C11 0.95077 (19) 0.66426 (14) 0.20256 (7) 0.0377 (3)
C12 0.7959 (2) 0.68032 (16) 0.22264 (8) 0.0454 (4)
H12 0.7859 0.7231 0.2589 0.055*
C13 0.6567 (2) 0.63238 (16) 0.18843 (8) 0.0477 (4)
H13 0.5526 0.6421 0.2020 0.057*
C14 0.67146 (19) 0.56991 (14) 0.13400 (8) 0.0410 (4)
C15 0.8263 (2) 0.55379 (15) 0.11401 (8) 0.0435 (4)
H15 0.8359 0.5115 0.0775 0.052*
C16 0.96666 (19) 0.60077 (15) 0.14841 (7) 0.0422 (4)
H16 1.0710 0.5898 0.1353 0.051*
C17 0.5128 (2) 0.39364 (17) 0.09782 (10) 0.0592 (5)
H17A 0.6237 0.3608 0.1001 0.071*
H17B 0.4510 0.3697 0.0579 0.071*
C18 0.4287 (4) 0.3465 (2) 0.15098 (12) 0.0839 (7)
H18A 0.4904 0.3684 0.1907 0.126*
H18B 0.4241 0.2639 0.1480 0.126*
H18C 0.3177 0.3768 0.1484 0.126*
C19 0.4017 (2) 0.58325 (17) 0.06710 (8) 0.0485 (4)
C20 0.4223 (3) 0.71197 (17) 0.06548 (9) 0.0564 (5)
H20A 0.3588 0.7423 0.0280 0.085*
H20B 0.5379 0.7305 0.0652 0.085*
H20C 0.3834 0.7454 0.1022 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0372 (2) 0.0426 (3) 0.0387 (2) −0.00274 (16) 0.00612 (16) 0.00737 (16)
O1 0.0619 (8) 0.0375 (6) 0.0527 (7) 0.0004 (6) 0.0049 (6) 0.0032 (5)
O2 0.0408 (6) 0.0717 (9) 0.0498 (7) −0.0092 (6) 0.0114 (5) 0.0127 (6)
O3 0.0518 (8) 0.0747 (10) 0.0762 (9) −0.0066 (7) −0.0140 (7) −0.0079 (8)
N1 0.0376 (7) 0.0394 (7) 0.0365 (6) 0.0037 (5) 0.0071 (5) 0.0036 (5)
N2 0.0397 (7) 0.0436 (8) 0.0584 (9) 0.0001 (6) 0.0028 (6) −0.0044 (7)
C1 0.0457 (9) 0.0479 (10) 0.0514 (9) 0.0085 (8) 0.0142 (8) 0.0004 (8)
C2 0.0891 (17) 0.0869 (18) 0.0821 (16) 0.0473 (14) −0.0048 (13) 0.0050 (14)
C3 0.0342 (7) 0.0354 (8) 0.0323 (7) −0.0006 (6) 0.0043 (6) 0.0021 (6)
C4 0.0388 (8) 0.0380 (8) 0.0392 (8) −0.0052 (7) 0.0018 (6) −0.0018 (6)
C5 0.0413 (8) 0.0477 (9) 0.0367 (8) 0.0048 (7) 0.0021 (7) −0.0035 (7)
C6 0.0393 (8) 0.0528 (10) 0.0416 (8) 0.0021 (7) 0.0086 (7) 0.0060 (7)
C7 0.0494 (10) 0.0434 (9) 0.0544 (10) −0.0142 (8) 0.0095 (8) 0.0013 (8)
C8 0.0530 (10) 0.0379 (9) 0.0416 (8) −0.0073 (7) 0.0082 (7) −0.0068 (7)
C9 0.0642 (12) 0.0715 (13) 0.0544 (11) 0.0027 (10) 0.0107 (10) −0.0209 (10)
C10 0.0596 (12) 0.0847 (16) 0.0622 (11) −0.0031 (11) 0.0254 (10) 0.0073 (11)
C11 0.0340 (8) 0.0451 (9) 0.0343 (7) 0.0036 (7) 0.0061 (6) 0.0065 (7)
C12 0.0404 (9) 0.0559 (10) 0.0414 (8) 0.0047 (8) 0.0104 (7) −0.0042 (8)
C13 0.0339 (8) 0.0619 (11) 0.0490 (9) 0.0029 (8) 0.0122 (7) −0.0034 (8)
C14 0.0351 (8) 0.0438 (9) 0.0439 (8) 0.0014 (7) 0.0038 (7) 0.0027 (7)
C15 0.0428 (9) 0.0504 (10) 0.0380 (8) 0.0055 (7) 0.0080 (7) −0.0016 (7)
C16 0.0344 (8) 0.0541 (10) 0.0396 (8) 0.0058 (7) 0.0110 (6) 0.0046 (7)
C17 0.0519 (11) 0.0488 (11) 0.0774 (13) 0.0015 (8) 0.0105 (9) −0.0121 (10)
C18 0.112 (2) 0.0563 (13) 0.0870 (16) −0.0039 (13) 0.0250 (15) 0.0065 (12)
C19 0.0429 (9) 0.0578 (11) 0.0445 (9) 0.0004 (8) 0.0043 (7) −0.0042 (8)
C20 0.0589 (11) 0.0538 (11) 0.0549 (10) 0.0054 (9) 0.0002 (9) 0.0030 (9)

Geometric parameters (Å, °)

S1—O1 1.4256 (13) C9—H9A 0.9600
S1—O2 1.4301 (12) C9—H9B 0.9600
S1—N1 1.6458 (13) C9—H9C 0.9600
S1—C11 1.7608 (16) C10—H10A 0.9600
O3—C19 1.226 (2) C10—H10B 0.9600
N1—C3 1.4534 (18) C10—H10C 0.9600
N1—C1 1.480 (2) C11—C12 1.386 (2)
N2—C19 1.352 (2) C11—C16 1.386 (2)
N2—C14 1.436 (2) C12—C13 1.379 (2)
N2—C17 1.470 (2) C12—H12 0.9300
C1—C2 1.478 (3) C13—C14 1.384 (2)
C1—H1A 0.9700 C13—H13 0.9300
C1—H1B 0.9700 C14—C15 1.385 (2)
C2—H2A 0.9600 C15—C16 1.383 (2)
C2—H2B 0.9600 C15—H15 0.9300
C2—H2C 0.9600 C16—H16 0.9300
C3—C8 1.376 (2) C17—C18 1.494 (3)
C3—C4 1.383 (2) C17—H17A 0.9700
C4—C5 1.390 (2) C17—H17B 0.9700
C4—H4 0.9300 C18—H18A 0.9600
C5—C6 1.396 (2) C18—H18B 0.9600
C5—C9 1.506 (2) C18—H18C 0.9600
C6—C7 1.382 (2) C19—C20 1.503 (3)
C6—C10 1.508 (2) C20—H20A 0.9600
C7—C8 1.382 (2) C20—H20B 0.9600
C7—H7 0.9300 C20—H20C 0.9600
C8—H8 0.9300
O1—S1—O2 119.46 (8) H9B—C9—H9C 109.5
O1—S1—N1 107.13 (7) C6—C10—H10A 109.5
O2—S1—N1 107.03 (7) C6—C10—H10B 109.5
O1—S1—C11 107.71 (8) H10A—C10—H10B 109.5
O2—S1—C11 108.45 (7) C6—C10—H10C 109.5
N1—S1—C11 106.37 (7) H10A—C10—H10C 109.5
C3—N1—C1 116.91 (12) H10B—C10—H10C 109.5
C3—N1—S1 115.41 (10) C12—C11—C16 120.59 (15)
C1—N1—S1 116.17 (10) C12—C11—S1 118.50 (12)
C19—N2—C14 123.41 (15) C16—C11—S1 120.86 (12)
C19—N2—C17 119.09 (15) C13—C12—C11 119.53 (15)
C14—N2—C17 117.48 (15) C13—C12—H12 120.2
C2—C1—N1 111.47 (16) C11—C12—H12 120.2
C2—C1—H1A 109.3 C12—C13—C14 120.17 (15)
N1—C1—H1A 109.3 C12—C13—H13 119.9
C2—C1—H1B 109.3 C14—C13—H13 119.9
N1—C1—H1B 109.3 C15—C14—C13 120.26 (15)
H1A—C1—H1B 108.0 C15—C14—N2 119.64 (15)
C1—C2—H2A 109.5 C13—C14—N2 120.09 (14)
C1—C2—H2B 109.5 C16—C15—C14 119.88 (15)
H2A—C2—H2B 109.5 C16—C15—H15 120.1
C1—C2—H2C 109.5 C14—C15—H15 120.1
H2A—C2—H2C 109.5 C15—C16—C11 119.56 (14)
H2B—C2—H2C 109.5 C15—C16—H16 120.2
C8—C3—C4 119.57 (14) C11—C16—H16 120.2
C8—C3—N1 120.92 (13) N2—C17—C18 113.53 (17)
C4—C3—N1 119.50 (13) N2—C17—H17A 108.9
C3—C4—C5 121.45 (14) C18—C17—H17A 108.9
C3—C4—H4 119.3 N2—C17—H17B 108.9
C5—C4—H4 119.3 C18—C17—H17B 108.9
C4—C5—C6 118.84 (15) H17A—C17—H17B 107.7
C4—C5—C9 119.93 (16) C17—C18—H18A 109.5
C6—C5—C9 121.23 (16) C17—C18—H18B 109.5
C7—C6—C5 118.90 (15) H18A—C18—H18B 109.5
C7—C6—C10 119.53 (17) C17—C18—H18C 109.5
C5—C6—C10 121.57 (16) H18A—C18—H18C 109.5
C8—C7—C6 121.90 (15) H18B—C18—H18C 109.5
C8—C7—H7 119.0 O3—C19—N2 120.85 (18)
C6—C7—H7 119.0 O3—C19—C20 120.99 (18)
C3—C8—C7 119.31 (15) N2—C19—C20 118.16 (16)
C3—C8—H8 120.3 C19—C20—H20A 109.5
C7—C8—H8 120.3 C19—C20—H20B 109.5
C5—C9—H9A 109.5 H20A—C20—H20B 109.5
C5—C9—H9B 109.5 C19—C20—H20C 109.5
H9A—C9—H9B 109.5 H20A—C20—H20C 109.5
C5—C9—H9C 109.5 H20B—C20—H20C 109.5
H9A—C9—H9C 109.5
O1—S1—N1—C3 48.43 (12) O2—S1—C11—C12 −159.96 (14)
O2—S1—N1—C3 177.67 (10) N1—S1—C11—C12 85.22 (14)
C11—S1—N1—C3 −66.55 (12) O1—S1—C11—C16 153.43 (13)
O1—S1—N1—C1 −169.22 (12) O2—S1—C11—C16 22.83 (16)
O2—S1—N1—C1 −39.98 (14) N1—S1—C11—C16 −91.99 (14)
C11—S1—N1—C1 75.80 (13) C16—C11—C12—C13 0.2 (3)
C3—N1—C1—C2 −68.9 (2) S1—C11—C12—C13 −177.06 (13)
S1—N1—C1—C2 149.37 (17) C11—C12—C13—C14 −0.8 (3)
C1—N1—C3—C8 −39.7 (2) C12—C13—C14—C15 0.9 (3)
S1—N1—C3—C8 102.32 (16) C12—C13—C14—N2 180.00 (16)
C1—N1—C3—C4 140.40 (15) C19—N2—C14—C15 −114.12 (19)
S1—N1—C3—C4 −77.54 (16) C17—N2—C14—C15 67.4 (2)
C8—C3—C4—C5 −1.0 (2) C19—N2—C14—C13 66.8 (2)
N1—C3—C4—C5 178.83 (13) C17—N2—C14—C13 −111.71 (19)
C3—C4—C5—C6 1.4 (2) C13—C14—C15—C16 −0.3 (3)
C3—C4—C5—C9 −178.33 (16) N2—C14—C15—C16 −179.42 (15)
C4—C5—C6—C7 −0.7 (2) C14—C15—C16—C11 −0.4 (3)
C9—C5—C6—C7 179.10 (17) C12—C11—C16—C15 0.4 (2)
C4—C5—C6—C10 178.90 (16) S1—C11—C16—C15 177.57 (13)
C9—C5—C6—C10 −1.3 (3) C19—N2—C17—C18 −89.7 (2)
C5—C6—C7—C8 −0.5 (3) C14—N2—C17—C18 88.9 (2)
C10—C6—C7—C8 179.92 (17) C14—N2—C19—O3 −176.18 (16)
C4—C3—C8—C7 −0.2 (2) C17—N2—C19—O3 2.3 (3)
N1—C3—C8—C7 179.99 (15) C14—N2—C19—C20 4.7 (2)
C6—C7—C8—C3 0.9 (3) C17—N2—C19—C20 −176.83 (17)
O1—S1—C11—C12 −29.36 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.
D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.93 2.54 3.455 (2) 170
C10—H10a···Cg1ii 0.96 2.93 3.728 (2) 142

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2743).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Khan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2641. [DOI] [PMC free article] [PubMed]
  5. Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.
  6. Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: Graw–Hill.
  7. Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045708/hg2743sup1.cif

e-66-o3152-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045708/hg2743Isup2.hkl

e-66-o3152-Isup2.hkl (195.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES