Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):m1566–m1567. doi: 10.1107/S1600536810046143

Tetra­aqua­diazido­cobalt(II) 3,3′-dicarb­oxy­l­ato-1,1′-ethyl­enedipyridinium

Yan-Qing Wen a, Chun-Yan Tian a, En-Qing Gao a,*
PMCID: PMC3011402  PMID: 21589255

Abstract

The asymmetric unit of the title compound, [Co(N3)2(H2O)4]·C14H12N2O4, comprises half of the cobalt(II) complex mol­ecule and a half of the 3,3′-dicarboxyl­ato-1,1′-ethyl­enedipyridinium mol­ecule. The CoII atom is located on an inversion centre and hence the complex mol­ecule adopts a centrosymmetric trans-octa­hedral geometry. The zwitterionic organic mol­ecule is also centrosymmetric with the centre of the C—C bond of the ethyl­ene moiety coinciding with an inversion centre. The adduct of metal complex and organic mol­ecule is associated into a three-dimenional network through O—H⋯O hydrogen bonds.

Related literature

For background to hydrogen bonds, see: Braga & Grepioni (2000); Fabbiani et al. (2010); Salitros et al. (2010); Schultheis et al. (2010). For the synthesis of the ligand, see: Loeb et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990).graphic file with name e-66-m1566-scheme1.jpg

Experimental

Crystal data

  • [Co(N3)2(H2O)4]·C14H12N2O4

  • M r = 487.31

  • Triclinic, Inline graphic

  • a = 7.4309 (6) Å

  • b = 7.7507 (7) Å

  • c = 8.5582 (7) Å

  • α = 95.463 (2)°

  • β = 90.586 (2)°

  • γ = 95.011 (2)°

  • V = 488.71 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.799, T max = 0.872

  • 6091 measured reflections

  • 1907 independent reflections

  • 1889 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.074

  • S = 1.12

  • 1907 reflections

  • 154 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046143/kp2284sup1.cif

e-66-m1566-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046143/kp2284Isup2.hkl

e-66-m1566-Isup2.hkl (93.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O4 2.0780 (12)
Co1—N2 2.0958 (15)
Co1—O3 2.1431 (12)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1i 0.84 (2) 2.01 (2) 2.8180 (18) 163 (2)
O3—H3C⋯O1ii 0.84 (2) 1.91 (2) 2.7395 (17) 172 (2)
O4—H4C⋯O2iii 0.86 (2) 1.84 (2) 2.6901 (18) 173 (3)
O4—H4B⋯O2 0.81 (2) 2.03 (2) 2.8028 (18) 159 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are thankful for financial support from the Shanghai Leading Academic Discipline Project (B409).

supplementary crystallographic information

Comment

Hydrogen bonds play a key role in biological systems and materials, and they have been widely used as a putative supramolecular tool for engineering organic and metal-organic solids (Fabbiani et al., 2010; Salitros et al., 2010; Schultheis et al., 2010; Braga & Grepioni, 2000). In this paper, we report the structure of the title compound, (I), which contains a neutral metal complex molecule, [Co(N3)2(H2O)4], and a zwitterionic dicarboxylate, 1,2-bis(3-carboxylatopyridinium)ethane (Fig. 1). The metal complex molecule is centrosymmetric, with the octahedral-coordinated CoII by two azide anions and four water molecules in a trans arrangement (Fig. 1, Table 1). Two opposite Co—O distances are longer than the Co—N and other Co—O ones, defining an axially elongated geometry. The zwitterionic molecule is also centrosymmetric (Fig.1 ). The inorganic complex molecules and the carboxylate groups are associated into a sheet through O—H···O hydrogen bonds involving the coordinated aqua ligands (O3 and O4) and the carboxylate oxygen atoms (O1 and O2) (Fig. 2, Table 2). The two O4 aqua ligands from symmetry related complex molecules and two O2 atoms from symmetry related organic molecules form a hydrogen-bonded ring which can be denoted by the graph set R42(8) (Bernstein et al., 1995; Etter, 1990). Similar hydrogen-bonded rings are formed by O1 and O3. The carboxylate group forms a R22(8) hydrogen-bonded ring with two aqua ligands from the same complex molecule. Besides, a large hydrogen-bonded ring [R44(16)] is formed by two carboxylate groups and four aqua ligands from two complex molecules. The organic ligands interlink the hydrogen-bonded sheets of the metal complexes into the three-dimensional structure (Fig. 3).

Experimental

The zwitterionic ligand ([H2L1]Br2) was synthesised from 1,2-dibromoethane and ethyl nicotinate according to the published procedure (Loeb et al., 2006). An aqueous solution (4 mL) of [H2L1]Br2 (0.1 mmol) and NaN3 (1 mmol) was added to a DMF solution (1.5 mL) of Co(ClO4)2.6H2O (0.2 mmol) with stirring. The resulting solution was allowed to evaporate slowly at room temperature, yielding light-red block crystals of (I) in three days. Yield: 75%. Anal. calcd (found) (%) for CoC14H20N8O8: C, 34.79 (34.51); H, 4.39 (4.14); N, 22.87 (23.00). Main IR bands (KBr, ν/cm-1): 3427m, 3097w, 2042 s, 1637 s, 1606 s, 1392m, 765m, 688m.

Refinement

All hydrogen atoms attached to carbon atoms were placed at calculated positions and refined with the riding model using AFIX 43 and AFIX 23 instructions for aromatic C—H and secondary CH2. The water hydrogen atoms were initially located from difference Fourier maps and refined isotropically with restraints on O—H distance (0.85 Å) and H—O—H angle, and Uiso(H) = 1.5Ueq(O). The 'rigid-bond' restraint was applied on the azide moiety (N2—N3—N4) using the SHELXL DELU instruction.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, -y, 1 - z; (ii) 1 - x, -y, -z].

Fig. 2.

Fig. 2.

Two-dimensional layer structure connected through intermolecula O—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii)-x, -y + 1, -z + 1].

Fig. 3.

Fig. 3.

Three dimensional structure connected by the organic ligands interlinking the hydrogen-bonded sheets.

Crystal data

[Co(N3)2(H2O)4]·C14H12N2O4 Z = 1
Mr = 487.31 F(000) = 251
Triclinic, P1 Dx = 1.656 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4309 (6) Å Cell parameters from 15377 reflections
b = 7.7507 (7) Å θ = 3.4–27.5°
c = 8.5582 (7) Å µ = 0.94 mm1
α = 95.463 (2)° T = 296 K
β = 90.586 (2)° Block, red
γ = 95.011 (2)° 0.25 × 0.20 × 0.15 mm
V = 488.71 (7) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 1907 independent reflections
Radiation source: fine-focus sealed tube 1889 reflections with I > 2σ(I)
graphite Rint = 0.015
phi and ω scans θmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.799, Tmax = 0.872 k = −9→8
6091 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.2239P] where P = (Fo2 + 2Fc2)/3
1907 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.28 e Å3
9 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.0000 0.0000 0.5000 0.02282 (12)
C1 0.3729 (2) 0.5896 (2) 0.3420 (2) 0.0283 (3)
C2 0.5025 (2) 0.4708 (2) 0.26023 (19) 0.0258 (3)
C3 0.6822 (2) 0.5278 (2) 0.2423 (2) 0.0335 (4)
H3A 0.7234 0.6424 0.2751 0.040*
C4 0.4437 (2) 0.3011 (2) 0.20731 (19) 0.0255 (3)
H4A 0.3228 0.2613 0.2153 0.031*
C5 0.8009 (2) 0.4148 (3) 0.1756 (3) 0.0392 (4)
H5A 0.9215 0.4530 0.1625 0.047*
C6 0.7382 (2) 0.2466 (2) 0.1293 (2) 0.0339 (4)
H6A 0.8173 0.1685 0.0875 0.041*
C7 0.5003 (2) 0.0111 (2) 0.08913 (19) 0.0286 (3)
H7A 0.3795 −0.0177 0.1265 0.034*
H7B 0.5803 −0.0667 0.1303 0.034*
N1 0.56206 (18) 0.19334 (17) 0.14405 (16) 0.0257 (3)
N2 0.0817 (2) −0.0222 (2) 0.26583 (18) 0.0399 (4)
N3 −0.0146 (2) −0.1006 (2) 0.16704 (17) 0.0320 (3)
N4 −0.1073 (3) −0.1740 (2) 0.0672 (2) 0.0461 (4)
O1 0.43867 (18) 0.73681 (16) 0.39597 (19) 0.0435 (4)
O2 0.21281 (17) 0.52889 (16) 0.35044 (18) 0.0405 (3)
O3 0.27781 (16) −0.00456 (16) 0.56790 (15) 0.0319 (3)
H3B 0.347 (3) 0.086 (2) 0.569 (3) 0.048*
H3C 0.321 (3) −0.082 (2) 0.508 (3) 0.048*
O4 0.02796 (18) 0.26995 (16) 0.50991 (18) 0.0379 (3)
H4B 0.090 (3) 0.323 (3) 0.449 (3) 0.057*
H4C −0.053 (3) 0.334 (3) 0.547 (3) 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02008 (17) 0.02004 (17) 0.02747 (17) −0.00003 (11) 0.00302 (11) −0.00082 (11)
C1 0.0273 (8) 0.0202 (7) 0.0363 (8) 0.0007 (6) 0.0062 (7) −0.0031 (6)
C2 0.0247 (8) 0.0210 (7) 0.0305 (8) 0.0009 (6) 0.0035 (6) −0.0024 (6)
C3 0.0282 (9) 0.0247 (8) 0.0445 (10) −0.0047 (7) 0.0040 (7) −0.0067 (7)
C4 0.0220 (7) 0.0230 (8) 0.0301 (8) 0.0002 (6) 0.0040 (6) −0.0026 (6)
C5 0.0231 (8) 0.0348 (9) 0.0565 (12) −0.0035 (7) 0.0081 (8) −0.0077 (8)
C6 0.0247 (8) 0.0311 (9) 0.0447 (10) 0.0045 (7) 0.0068 (7) −0.0056 (7)
C7 0.0331 (8) 0.0179 (7) 0.0336 (9) 0.0000 (6) 0.0054 (7) −0.0030 (6)
N1 0.0256 (7) 0.0203 (6) 0.0297 (7) 0.0006 (5) 0.0035 (5) −0.0043 (5)
N2 0.0335 (8) 0.0555 (10) 0.0297 (8) −0.0006 (7) 0.0064 (6) 0.0028 (7)
N3 0.0314 (8) 0.0343 (8) 0.0318 (8) 0.0069 (6) 0.0117 (7) 0.0059 (6)
N4 0.0475 (10) 0.0485 (10) 0.0398 (9) −0.0053 (8) 0.0032 (8) −0.0011 (8)
O1 0.0330 (7) 0.0226 (6) 0.0701 (10) −0.0026 (5) 0.0105 (6) −0.0159 (6)
O2 0.0282 (6) 0.0241 (6) 0.0665 (9) −0.0017 (5) 0.0160 (6) −0.0082 (6)
O3 0.0230 (6) 0.0274 (6) 0.0434 (7) 0.0016 (5) 0.0014 (5) −0.0067 (5)
O4 0.0356 (7) 0.0210 (6) 0.0575 (8) 0.0026 (5) 0.0178 (6) 0.0028 (5)

Geometric parameters (Å, °)

Co1—O4 2.0780 (12) C5—C6 1.366 (3)
Co1—O4i 2.0780 (12) C5—H5A 0.9300
Co1—N2 2.0958 (15) C6—N1 1.349 (2)
Co1—N2i 2.0958 (15) C6—H6A 0.9300
Co1—O3i 2.1431 (12) C7—N1 1.478 (2)
Co1—O3 2.1431 (12) C7—C7ii 1.519 (3)
C1—O1 1.245 (2) C7—H7A 0.9700
C1—O2 1.246 (2) C7—H7B 0.9700
C1—C2 1.521 (2) N2—N3 1.188 (2)
C2—C4 1.381 (2) N3—N4 1.164 (2)
C2—C3 1.384 (2) O3—H3B 0.836 (15)
C3—C5 1.386 (3) O3—H3C 0.839 (15)
C3—H3A 0.9300 O4—H4B 0.813 (16)
C4—N1 1.348 (2) O4—H4C 0.856 (16)
C4—H4A 0.9300
O4—Co1—O4i 180.0 N1—C4—H4A 120.1
O4—Co1—N2 91.41 (6) C2—C4—H4A 120.1
O4i—Co1—N2 88.59 (6) C6—C5—C3 119.02 (16)
O4—Co1—N2i 88.59 (6) C6—C5—H5A 120.5
O4i—Co1—N2i 91.41 (6) C3—C5—H5A 120.5
N2—Co1—N2i 180.0 N1—C6—C5 120.23 (16)
O4—Co1—O3i 88.83 (5) N1—C6—H6A 119.9
O4i—Co1—O3i 91.17 (5) C5—C6—H6A 119.9
N2—Co1—O3i 92.17 (6) N1—C7—C7ii 109.09 (16)
N2i—Co1—O3i 87.83 (6) N1—C7—H7A 109.9
O4—Co1—O3 91.17 (5) C7ii—C7—H7A 109.9
O4i—Co1—O3 88.83 (5) N1—C7—H7B 109.9
N2—Co1—O3 87.83 (6) C7ii—C7—H7B 109.9
N2i—Co1—O3 92.17 (6) H7A—C7—H7B 108.3
O3i—Co1—O3 180.0 C4—N1—C6 121.82 (14)
O1—C1—O2 126.73 (15) C4—N1—C7 120.05 (13)
O1—C1—C2 116.50 (14) C6—N1—C7 118.13 (14)
O2—C1—C2 116.75 (14) N3—N2—Co1 120.05 (12)
C4—C2—C3 118.77 (14) N4—N3—N2 178.01 (19)
C4—C2—C1 120.22 (14) Co1—O3—H3B 119.4 (17)
C3—C2—C1 120.97 (14) Co1—O3—H3C 107.1 (17)
C2—C3—C5 120.26 (16) H3B—O3—H3C 108.0 (19)
C2—C3—H3A 119.9 Co1—O4—H4B 122.9 (18)
C5—C3—H3A 119.9 Co1—O4—H4C 123.1 (17)
N1—C4—C2 119.85 (14) H4B—O4—H4C 109 (2)
O1—C1—C2—C4 175.22 (17) C2—C4—N1—C6 −0.5 (3)
O2—C1—C2—C4 −3.6 (2) C2—C4—N1—C7 179.21 (14)
O1—C1—C2—C3 −2.5 (3) C5—C6—N1—C4 −1.6 (3)
O2—C1—C2—C3 178.67 (17) C5—C6—N1—C7 178.70 (17)
C4—C2—C3—C5 −1.5 (3) C7ii—C7—N1—C4 108.4 (2)
C1—C2—C3—C5 176.28 (18) C7ii—C7—N1—C6 −71.9 (2)
C3—C2—C4—N1 2.0 (2) O4—Co1—N2—N3 −122.40 (16)
C1—C2—C4—N1 −175.75 (15) O4i—Co1—N2—N3 57.60 (16)
C2—C3—C5—C6 −0.6 (3) O3i—Co1—N2—N3 −33.51 (16)
C3—C5—C6—N1 2.1 (3) O3—Co1—N2—N3 146.49 (16)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3B···O1iii 0.84 (2) 2.01 (2) 2.8180 (18) 163 (2)
O3—H3C···O1iv 0.84 (2) 1.91 (2) 2.7395 (17) 172 (2)
O4—H4C···O2v 0.86 (2) 1.84 (2) 2.6901 (18) 173 (3)
O4—H4B···O2 0.81 (2) 2.03 (2) 2.8028 (18) 159 (2)

Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2284).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Braga, D. & Grepioni, F. (2000). Acc. Chem. Res.33, 601–608. [DOI] [PubMed]
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  6. Fabbiani, P. A. F., Levendis, C. D., Buth, G., Kuhs, F. W., Shanklandd, N. & Sowa, H. (2010). CrystEngComm, 12, 2354–2360.
  7. Loeb, S. J., Tiburcio, J., Vella, S. J. & Wisner, J. A. (2006). Org. Biomol. Chem.4, 667–680. [DOI] [PubMed]
  8. Salitros, I., Pavlik, J., Boca, R., Fuhr, O., Rajaduraia, C. & Ruben, M. (2010). CrystEngComm, 12, 2361–2368.
  9. Schultheis, N., Bethune, S. & Henck, J. O. (2010). CrystEngComm, 12, 2436–2442.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046143/kp2284sup1.cif

e-66-m1566-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046143/kp2284Isup2.hkl

e-66-m1566-Isup2.hkl (93.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES