Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 24;66(Pt 12):o3294. doi: 10.1107/S1600536810048312

2-[(5,7-Dibromo­quinolin-8-yl)­oxy]-N-(2-meth­oxy­phen­yl)acetamide

Yong-Hong Wen a,*, Hong-Qing Qin a, Hui-Ling Wen a
PMCID: PMC3011411  PMID: 21589573

Abstract

In the title compound, C18H14Br2N2O3, an intra­molecular N—H⋯N hydrogen bond forms an eight-membered ring. The dihedral angle between the planes of the quinoline system and the benzene ring is 41.69 (1)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and short Br⋯O inter­actions [3.0079 (19) Å].

Related literature

The structure of N,N-dicyclo­hexyl-2-(5,7-dibromo­quinolin-8-yl­oxy)acetamide has been reported by Liu et al. (2007). For bond-length data, see: Allen et al. (1987). For applications of 8-hy­droxy­quinoline and its derivatives, see: Bratzel et al. (1972). Some 8-hy­droxy­quinoline derivatives and their trans­ition metal complexes exhibit anti­bacterial activity, see: Patel & Patel (1999).graphic file with name e-66-o3294-scheme1.jpg

Experimental

Crystal data

  • C18H14Br2N2O3

  • M r = 466.13

  • Monoclinic, Inline graphic

  • a = 8.7570 (18) Å

  • b = 8.7279 (17) Å

  • c = 22.372 (5) Å

  • β = 98.04 (3)°

  • V = 1693.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.81 mm−1

  • T = 293 K

  • 0.06 × 0.02 × 0.02 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.761, T max = 0.910

  • 12864 measured reflections

  • 4027 independent reflections

  • 3316 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.093

  • S = 1.06

  • 4027 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048312/hg2753sup1.cif

e-66-o3294-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048312/hg2753Isup2.hkl

e-66-o3294-Isup2.hkl (197.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.90 (1) 2.24 (1) 3.065 (3) 153 (1)
C18—H18C⋯O2i 0.96 2.53 3.342 (3) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20971076), the Outstanding Adult–young Scientific Research Encouraging Foundation of Shandong Province, China (No. 2008BS0901). The authors acknowledge X.-F. Tang’s help with this paper.

supplementary crystallographic information

Comment

8-Hydroxyquinoline and its derivatives have found extensive application as analytical reagents, e.g. in absorption spectrophotometry, fluorimetry, solvent extraction and partition chromatography (Bratzel et al., 1972). Some 8-hydroxyquinoline derivatives and their complexes with transition metals demonstrate antibacterial activity (Patel & Patel,1999). Recently, the structure of 5,7-dibromosubstituted 8-hydroxyquinolinate amide-type compound, namely N,N-dicyclohexyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide, (II), has been reported (Liu et al., 2007). Here, we have synthesized and carried out the structure determination of the title compound, (I), (Fig. 1).

All bond lengths in (I) are within normal ranges (Allen et al., 1987) and comparable with those in the related compound (II). The sum of the angles around atoms N2 and C11 are 359.9° and 360.0°, respectively, implying a planar configuration. There is one intramolecular hydrogen bond, viz. N2—H2···N1 (Table 1), forming one larger eight-membered ring. The dihedral angle between the planes of the quinoline system and the benzene ring is 41.69 (1)°. The crystal packing is stabilized by intermolecular C18—H18C···O2 hydrogen bond (Table 1) and Br···O short-contact interactions.

Experimental

To a solution of 5,7-dibromo-8-hydroxyquinoline (3.02 g, 10 mmol) in acetone (60 ml) were added 2-chloro-N-(4-methoxyphenyl)acetamide (2.0 g,10 mmol), K2CO3 (1.52 g, 11 mmol) and KI (0.5 g), and the resulting mixture was stirred at 333 K for 5 h. After cooling to room temperature, the mixture was washed three times with water and filtered. Colourless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an acetone solution over a period of 6 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The amide proton was refined freely, giving a N—H bond distance of 0.898 (9) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of (I), viewed down the c axis, showing the intermolecular hydrogen bonds (dashed lines).

Crystal data

C18H14Br2N2O3 F(000) = 920
Mr = 466.13 Dx = 1.829 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4165 reflections
a = 8.7570 (18) Å θ = 1.8–27.9°
b = 8.7279 (17) Å µ = 4.81 mm1
c = 22.372 (5) Å T = 293 K
β = 98.04 (3)° Column, colourless
V = 1693.1 (6) Å3 0.06 × 0.02 × 0.02 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4027 independent reflections
Radiation source: fine-focus sealed tube 3316 reflections with I > 2σ(I)
graphite Rint = 0.057
phi and ω scans θmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.761, Tmax = 0.910 k = −11→8
12864 measured reflections l = −29→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0337P)2 + 1.4595P] where P = (Fo2 + 2Fc2)/3
4027 reflections (Δ/σ)max = 0.005
231 parameters Δρmax = 0.83 e Å3
1 restraint Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.77254 (3) 0.41089 (3) 1.064695 (11) 0.01979 (6)
Br2 0.16180 (3) 0.18905 (3) 1.014627 (12) 0.02468 (7)
O1 0.81081 (18) 0.22709 (18) 0.94999 (7) 0.0173 (4)
O2 1.0293 (2) 0.39129 (19) 0.84558 (8) 0.0241 (4)
O3 0.8399 (2) −0.13107 (19) 0.82222 (8) 0.0262 (5)
N2 0.9123 (2) 0.1556 (2) 0.84366 (9) 0.0171 (5)
N1 0.5971 (2) 0.0662 (2) 0.87776 (9) 0.0190 (5)
C1 0.6236 (3) 0.2953 (3) 1.01398 (11) 0.0171 (5)
C2 0.4727 (3) 0.2851 (3) 1.02927 (11) 0.0180 (5)
H2 0.4474 0.3365 1.0630 0.022*
C3 0.3646 (3) 0.1998 (3) 0.99438 (11) 0.0189 (6)
C4 0.3988 (3) 0.1219 (3) 0.94234 (11) 0.0168 (5)
C5 0.2943 (3) 0.0290 (3) 0.90434 (11) 0.0203 (6)
H5 0.1941 0.0150 0.9127 0.024*
C6 0.3416 (3) −0.0401 (3) 0.85523 (12) 0.0222 (6)
H6 0.2736 −0.1005 0.8297 0.027*
C7 0.4956 (3) −0.0190 (3) 0.84358 (11) 0.0185 (6)
H7 0.5262 −0.0676 0.8102 0.022*
C8 0.5505 (3) 0.1348 (3) 0.92702 (11) 0.0167 (5)
C9 0.6633 (3) 0.2237 (3) 0.96423 (10) 0.0144 (5)
C10 0.8431 (3) 0.3518 (3) 0.91172 (11) 0.0199 (6)
H10A 0.8976 0.4317 0.9362 0.024*
H10B 0.7467 0.3946 0.8920 0.024*
C11 0.9396 (3) 0.3002 (3) 0.86413 (11) 0.0167 (5)
C12 0.9771 (3) 0.0828 (3) 0.79679 (11) 0.0171 (6)
C13 1.0774 (3) 0.1524 (3) 0.76220 (11) 0.0219 (6)
H13 1.1071 0.2536 0.7697 0.026*
C14 1.1340 (3) 0.0712 (3) 0.71627 (12) 0.0267 (7)
H14 1.2012 0.1188 0.6934 0.032*
C15 1.0912 (3) −0.0787 (3) 0.70449 (12) 0.0270 (7)
H15 1.1279 −0.1317 0.6733 0.032*
C16 0.9923 (3) −0.1508 (3) 0.73961 (12) 0.0244 (6)
H16 0.9645 −0.2526 0.7322 0.029*
C17 0.9358 (3) −0.0713 (3) 0.78527 (11) 0.0194 (6)
C18 0.8150 (3) −0.2923 (3) 0.82018 (13) 0.0284 (7)
H18A 0.7705 −0.3216 0.7801 0.043*
H18B 0.7460 −0.3198 0.8482 0.043*
H18C 0.9116 −0.3443 0.8308 0.043*
H2A 0.8405 (13) 0.106 (2) 0.8612 (8) 0.032 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02090 (11) 0.02052 (12) 0.01835 (12) −0.00516 (10) 0.00418 (10) −0.00258 (10)
Br2 0.01560 (11) 0.02843 (13) 0.03130 (14) −0.00014 (10) 0.00784 (10) 0.00388 (11)
O1 0.0136 (7) 0.0182 (8) 0.0208 (8) −0.0006 (7) 0.0048 (7) 0.0022 (7)
O2 0.0284 (9) 0.0165 (8) 0.0304 (10) −0.0091 (7) 0.0149 (8) −0.0046 (7)
O3 0.0305 (9) 0.0132 (8) 0.0377 (10) −0.0036 (7) 0.0139 (8) −0.0035 (8)
N2 0.0194 (9) 0.0132 (9) 0.0200 (10) 0.0007 (8) 0.0076 (8) 0.0011 (8)
N1 0.0197 (10) 0.0200 (10) 0.0168 (10) 0.0022 (8) 0.0012 (9) 0.0018 (8)
C1 0.0177 (11) 0.0161 (11) 0.0175 (12) 0.0000 (9) 0.0019 (9) 0.0037 (9)
C2 0.0178 (11) 0.0173 (11) 0.0209 (12) 0.0003 (9) 0.0096 (10) 0.0026 (10)
C3 0.0159 (11) 0.0180 (11) 0.0232 (12) 0.0030 (9) 0.0044 (10) 0.0098 (10)
C4 0.0151 (10) 0.0173 (11) 0.0172 (12) 0.0031 (9) −0.0006 (9) 0.0085 (10)
C5 0.0160 (11) 0.0179 (11) 0.0261 (13) −0.0019 (10) 0.0000 (10) 0.0044 (10)
C6 0.0220 (12) 0.0176 (12) 0.0250 (13) −0.0035 (10) −0.0038 (11) 0.0029 (10)
C7 0.0252 (12) 0.0149 (11) 0.0143 (11) −0.0027 (10) −0.0008 (10) −0.0010 (10)
C8 0.0202 (11) 0.0138 (10) 0.0161 (11) 0.0007 (9) 0.0025 (10) 0.0048 (9)
C9 0.0117 (10) 0.0141 (11) 0.0175 (11) 0.0006 (9) 0.0030 (9) 0.0035 (9)
C10 0.0242 (12) 0.0127 (11) 0.0247 (12) −0.0028 (10) 0.0099 (10) −0.0012 (10)
C11 0.0152 (10) 0.0158 (11) 0.0191 (12) 0.0012 (9) 0.0024 (9) 0.0012 (10)
C12 0.0200 (11) 0.0160 (11) 0.0138 (11) 0.0025 (9) −0.0023 (10) 0.0001 (9)
C13 0.0245 (12) 0.0184 (12) 0.0230 (13) 0.0010 (10) 0.0046 (11) 0.0030 (10)
C14 0.0328 (14) 0.0299 (14) 0.0193 (13) 0.0003 (12) 0.0105 (11) 0.0010 (11)
C15 0.0327 (14) 0.0300 (14) 0.0184 (13) 0.0084 (12) 0.0040 (11) −0.0057 (11)
C16 0.0288 (13) 0.0183 (12) 0.0261 (13) 0.0028 (11) 0.0031 (11) −0.0082 (11)
C17 0.0188 (11) 0.0197 (12) 0.0188 (12) 0.0018 (10) −0.0009 (10) −0.0010 (10)
C18 0.0332 (14) 0.0164 (12) 0.0357 (15) −0.0043 (11) 0.0055 (13) −0.0017 (11)

Geometric parameters (Å, °)

Br1—C1 1.895 (2) C6—C7 1.420 (4)
Br2—C3 1.896 (2) C6—H6 0.9300
O1—C9 1.374 (3) C7—H7 0.9300
O1—C10 1.437 (3) C8—C9 1.429 (3)
O2—C11 1.230 (3) C10—C11 1.518 (3)
O3—C17 1.362 (3) C10—H10A 0.9700
O3—C18 1.424 (3) C10—H10B 0.9700
N2—C11 1.352 (3) C12—C13 1.389 (4)
N2—C12 1.411 (3) C12—C17 1.407 (3)
N2—H2A 0.898 (9) C13—C14 1.395 (4)
N1—C7 1.318 (3) C13—H13 0.9300
N1—C8 1.366 (3) C14—C15 1.376 (4)
C1—C9 1.363 (3) C14—H14 0.9300
C1—C2 1.414 (3) C15—C16 1.398 (4)
C2—C3 1.361 (3) C15—H15 0.9300
C2—H2 0.9300 C16—C17 1.383 (4)
C3—C4 1.416 (3) C16—H16 0.9300
C4—C5 1.415 (3) C18—H18A 0.9600
C4—C8 1.421 (3) C18—H18B 0.9600
C5—C6 1.368 (4) C18—H18C 0.9600
C5—H5 0.9300
C9—O1—C10 115.11 (17) O1—C10—C11 111.60 (19)
C17—O3—C18 117.6 (2) O1—C10—H10A 109.3
C11—N2—C12 127.0 (2) C11—C10—H10A 109.3
C11—N2—H2A 113.8 (14) O1—C10—H10B 109.3
C12—N2—H2A 119.1 (14) C11—C10—H10B 109.3
C7—N1—C8 117.5 (2) H10A—C10—H10B 108.0
C9—C1—C2 121.5 (2) O2—C11—N2 125.5 (2)
C9—C1—Br1 120.03 (18) O2—C11—C10 119.3 (2)
C2—C1—Br1 118.47 (18) N2—C11—C10 115.2 (2)
C3—C2—C1 119.6 (2) C13—C12—C17 118.8 (2)
C3—C2—H2 120.2 C13—C12—N2 124.7 (2)
C1—C2—H2 120.2 C17—C12—N2 116.5 (2)
C2—C3—C4 121.6 (2) C12—C13—C14 120.4 (2)
C2—C3—Br2 119.32 (19) C12—C13—H13 119.8
C4—C3—Br2 119.06 (17) C14—C13—H13 119.8
C5—C4—C3 125.1 (2) C15—C14—C13 120.6 (3)
C5—C4—C8 116.7 (2) C15—C14—H14 119.7
C3—C4—C8 118.2 (2) C13—C14—H14 119.7
C6—C5—C4 119.5 (2) C14—C15—C16 119.6 (3)
C6—C5—H5 120.3 C14—C15—H15 120.2
C4—C5—H5 120.3 C16—C15—H15 120.2
C5—C6—C7 119.5 (2) C17—C16—C15 120.2 (2)
C5—C6—H6 120.3 C17—C16—H16 119.9
C7—C6—H6 120.3 C15—C16—H16 119.9
N1—C7—C6 123.2 (2) O3—C17—C16 124.8 (2)
N1—C7—H7 118.4 O3—C17—C12 114.8 (2)
C6—C7—H7 118.4 C16—C17—C12 120.4 (2)
N1—C8—C4 123.7 (2) O3—C18—H18A 109.5
N1—C8—C9 116.6 (2) O3—C18—H18B 109.5
C4—C8—C9 119.7 (2) H18A—C18—H18B 109.5
C1—C9—O1 122.3 (2) O3—C18—H18C 109.5
C1—C9—C8 119.4 (2) H18A—C18—H18C 109.5
O1—C9—C8 118.2 (2) H18B—C18—H18C 109.5
C9—C1—C2—C3 1.2 (4) N1—C8—C9—C1 179.8 (2)
Br1—C1—C2—C3 −178.45 (18) C4—C8—C9—C1 −0.2 (3)
C1—C2—C3—C4 −0.8 (4) N1—C8—C9—O1 −3.4 (3)
C1—C2—C3—Br2 −179.18 (17) C4—C8—C9—O1 176.6 (2)
C2—C3—C4—C5 178.9 (2) C9—O1—C10—C11 −138.9 (2)
Br2—C3—C4—C5 −2.8 (3) C12—N2—C11—O2 −1.6 (4)
C2—C3—C4—C8 0.0 (3) C12—N2—C11—C10 175.2 (2)
Br2—C3—C4—C8 178.33 (17) O1—C10—C11—O2 −149.5 (2)
C3—C4—C5—C6 179.9 (2) O1—C10—C11—N2 33.5 (3)
C8—C4—C5—C6 −1.2 (3) C11—N2—C12—C13 −2.4 (4)
C4—C5—C6—C7 0.7 (4) C11—N2—C12—C17 177.4 (2)
C8—N1—C7—C6 0.9 (3) C17—C12—C13—C14 1.0 (4)
C5—C6—C7—N1 −0.6 (4) N2—C12—C13—C14 −179.2 (2)
C7—N1—C8—C4 −1.4 (3) C12—C13—C14—C15 0.1 (4)
C7—N1—C8—C9 178.6 (2) C13—C14—C15—C16 −1.1 (4)
C5—C4—C8—N1 1.6 (3) C14—C15—C16—C17 1.1 (4)
C3—C4—C8—N1 −179.4 (2) C18—O3—C17—C16 10.3 (3)
C5—C4—C8—C9 −178.5 (2) C18—O3—C17—C12 −169.3 (2)
C3—C4—C8—C9 0.5 (3) C15—C16—C17—O3 −179.5 (2)
C2—C1—C9—O1 −177.3 (2) C15—C16—C17—C12 0.0 (4)
Br1—C1—C9—O1 2.3 (3) C13—C12—C17—O3 178.5 (2)
C2—C1—C9—C8 −0.7 (3) N2—C12—C17—O3 −1.3 (3)
Br1—C1—C9—C8 178.94 (17) C13—C12—C17—C16 −1.1 (4)
C10—O1—C9—C1 −90.4 (3) N2—C12—C17—C16 179.1 (2)
C10—O1—C9—C8 92.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N1 0.90 (1) 2.24 (1) 3.065 (3) 153 (1)
C18—H18C···O2i 0.96 2.53 3.342 (3) 142

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2753).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem.44, 1240–1245.
  3. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Liu, J.-F., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4458.
  5. Patel, A. K. & Patel, V. M. (1999). Synth. React. Inorg. Met. Org. Chem.29, 193–197.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048312/hg2753sup1.cif

e-66-o3294-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048312/hg2753Isup2.hkl

e-66-o3294-Isup2.hkl (197.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES