Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3144. doi: 10.1107/S1600536810045563

N-(2,4-Dichloro­phen­yl)-2,4-dimethyl­benzene­sulfonamide

P G Nirmala a, Sabine Foro b, B Thimme Gowda a,*, Hartmut Fuess b
PMCID: PMC3011417  PMID: 21589443

Abstract

In the title compound, C14H13Cl2NO2S, the mol­ecule is bent at the S atom with an C—SO2—NH—C torsion angle of −69.9 (2)°. The dihedral angle between the sulfonyl and aniline benzene rings is 44.0 (1)°. The crystal structure features inversion dimers linked by pairs of N—H⋯O hydrogen bonds. An intra­molecular N—H⋯Cl hydrogen bond is also observed.

Related literature

For the preparation of the compound, see: Savitha & Gowda (2006). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009); Nirmala et al. (2010a,b ). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-66-o3144-scheme1.jpg

Experimental

Crystal data

  • C14H13Cl2NO2S

  • M r = 330.21

  • Triclinic, Inline graphic

  • a = 8.2407 (9) Å

  • b = 8.3418 (9) Å

  • c = 10.849 (1) Å

  • α = 84.59 (1)°

  • β = 89.06 (1)°

  • γ = 85.07 (1)°

  • V = 739.69 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.27 mm−1

  • T = 293 K

  • 0.45 × 0.40 × 0.13 mm

Data collection

  • Ennraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.200, T max = 0.547

  • 5173 measured reflections

  • 2629 independent reflections

  • 2496 reflections with I > 2σ(I)

  • R int = 0.033

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.159

  • S = 1.05

  • 2629 reflections

  • 187 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045563/bq2251sup1.cif

e-66-o3144-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045563/bq2251Isup2.hkl

e-66-o3144-Isup2.hkl (129.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.24 (2) 3.056 (3) 159 (3)
N1—H1N⋯Cl1 0.85 (2) 2.68 (3) 3.020 (2) 105 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009; Nirmala et al., 2010a,b), the structure of 2,4-dimethyl-N-(2,4-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of -69.9 (2)°, compared to the values of 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (II) (Gowda et al., 2009), -54.9 (3)° in 2,4-dimethyl-N-(3,5-dichlorophenyl)benzenesulfonamide (III) (Nirmala et al., 2010b) and 66.5 (2)° in 2,4-dimethyl-N-(2,4-dimethylphenyl)-benzenesulfonamide (IV) (Nirmala et al., 2010a)

The two benzene rings in (I) are tilted relative to each other by 44.0 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of(II), 82.3 (1)° in (III) and 41.0 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The structure shows simultaneous N—H···Cl intramolecular and N—H···O intermolecular H-bonding (Table 1). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds is shown in Fig.2.

Experimental

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 2,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(2,4-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The plate like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H13Cl2NO2S Z = 2
Mr = 330.21 F(000) = 340
Triclinic, P1 Dx = 1.483 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 8.2407 (9) Å Cell parameters from 25 reflections
b = 8.3418 (9) Å θ = 6.7–18.3°
c = 10.849 (1) Å µ = 5.27 mm1
α = 84.59 (1)° T = 293 K
β = 89.06 (1)° Plate, colorless
γ = 85.07 (1)° 0.45 × 0.40 × 0.13 mm
V = 739.69 (13) Å3

Data collection

Ennraf–Nonius CAD-4 diffractometer 2496 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 66.9°, θmin = 4.1°
ω/2θ scans h = −9→9
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.200, Tmax = 0.547 l = −12→12
5173 measured reflections 3 standard reflections every 120 min
2629 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.1122P)2 + 0.3056P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.003
2629 reflections Δρmax = 0.41 e Å3
187 parameters Δρmin = −0.80 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0131 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0771 (3) 0.4275 (3) 0.2785 (2) 0.0417 (5)
C2 0.1504 (3) 0.3433 (3) 0.3839 (2) 0.0494 (6)
C3 0.0454 (4) 0.2704 (4) 0.4696 (3) 0.0593 (7)
H3 0.0903 0.2133 0.5405 0.071*
C4 −0.1211 (4) 0.2779 (4) 0.4556 (3) 0.0586 (7)
C5 −0.1883 (4) 0.3659 (4) 0.3526 (3) 0.0571 (7)
H5 −0.3007 0.3764 0.3428 0.069*
C6 −0.0905 (3) 0.4382 (3) 0.2642 (2) 0.0497 (6)
H6 −0.1372 0.4952 0.1939 0.060*
C7 0.3576 (3) 0.2472 (3) 0.0982 (2) 0.0385 (5)
C8 0.3155 (3) 0.0907 (3) 0.1315 (2) 0.0394 (5)
C9 0.4329 (3) −0.0337 (3) 0.1657 (2) 0.0440 (6)
H9 0.4039 −0.1381 0.1872 0.053*
C10 0.5934 (3) 0.0004 (3) 0.1671 (2) 0.0448 (6)
C11 0.6398 (3) 0.1535 (3) 0.1328 (2) 0.0496 (6)
H11 0.7490 0.1741 0.1331 0.060*
C12 0.5214 (3) 0.2753 (3) 0.0980 (2) 0.0459 (6)
H12 0.5516 0.3785 0.0739 0.055*
C13 0.3296 (4) 0.3251 (5) 0.4112 (3) 0.0705 (9)
H13A 0.3685 0.4300 0.4134 0.085*
H13B 0.3869 0.2698 0.3477 0.085*
H13C 0.3478 0.2639 0.4899 0.085*
C14 −0.2268 (5) 0.1923 (5) 0.5518 (4) 0.0833 (11)
H14A −0.1703 0.1745 0.6292 0.100*
H14B −0.2503 0.0904 0.5250 0.100*
H14C −0.3268 0.2579 0.5621 0.100*
N1 0.2394 (3) 0.3750 (2) 0.06051 (18) 0.0425 (5)
H1N 0.156 (3) 0.347 (4) 0.026 (3) 0.051*
O1 0.3348 (2) 0.5697 (2) 0.1953 (2) 0.0564 (5)
O2 0.0776 (3) 0.6299 (2) 0.08078 (18) 0.0559 (5)
Cl1 0.11490 (8) 0.04794 (8) 0.12875 (7) 0.0581 (3)
Cl2 0.74198 (9) −0.15459 (9) 0.20963 (7) 0.0672 (3)
S1 0.18758 (7) 0.51721 (7) 0.15244 (5) 0.0428 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0409 (12) 0.0415 (13) 0.0434 (12) −0.0039 (9) 0.0029 (10) −0.0073 (10)
C2 0.0487 (15) 0.0545 (16) 0.0446 (13) 0.0003 (11) −0.0017 (11) −0.0077 (11)
C3 0.0670 (18) 0.0663 (18) 0.0424 (13) 0.0009 (14) −0.0003 (12) 0.0003 (12)
C4 0.0614 (17) 0.0637 (18) 0.0516 (15) −0.0101 (14) 0.0112 (13) −0.0078 (13)
C5 0.0440 (14) 0.0716 (19) 0.0575 (15) −0.0091 (13) 0.0056 (12) −0.0119 (13)
C6 0.0450 (14) 0.0559 (15) 0.0475 (13) −0.0012 (11) −0.0019 (10) −0.0034 (11)
C7 0.0397 (12) 0.0382 (12) 0.0374 (11) −0.0034 (9) 0.0025 (9) −0.0027 (9)
C8 0.0398 (12) 0.0406 (13) 0.0384 (11) −0.0086 (9) 0.0006 (9) −0.0029 (9)
C9 0.0503 (14) 0.0380 (12) 0.0429 (12) −0.0041 (10) −0.0009 (10) 0.0008 (9)
C10 0.0440 (13) 0.0455 (13) 0.0439 (12) 0.0053 (10) −0.0032 (10) −0.0071 (10)
C11 0.0381 (13) 0.0524 (15) 0.0599 (15) −0.0058 (11) 0.0026 (11) −0.0122 (12)
C12 0.0413 (13) 0.0404 (13) 0.0568 (14) −0.0082 (10) 0.0079 (10) −0.0058 (10)
C13 0.0512 (17) 0.097 (3) 0.0608 (17) 0.0054 (16) −0.0101 (13) −0.0045 (16)
C14 0.084 (3) 0.092 (3) 0.073 (2) −0.018 (2) 0.0244 (19) 0.0047 (19)
N1 0.0435 (11) 0.0382 (11) 0.0450 (11) −0.0008 (8) 0.0010 (8) −0.0015 (8)
O1 0.0508 (11) 0.0462 (11) 0.0749 (12) −0.0120 (8) 0.0031 (9) −0.0134 (9)
O2 0.0590 (12) 0.0403 (10) 0.0646 (11) 0.0061 (8) 0.0026 (9) 0.0059 (8)
Cl1 0.0405 (4) 0.0519 (4) 0.0825 (5) −0.0131 (3) −0.0042 (3) −0.0001 (3)
Cl2 0.0586 (5) 0.0630 (5) 0.0758 (5) 0.0180 (3) −0.0144 (4) −0.0036 (4)
S1 0.0434 (4) 0.0333 (4) 0.0512 (4) −0.0023 (2) 0.0033 (3) −0.0024 (3)

Geometric parameters (Å, °)

C1—C6 1.387 (4) C9—C10 1.378 (4)
C1—C2 1.402 (4) C9—H9 0.9300
C1—S1 1.773 (2) C10—C11 1.381 (4)
C2—C3 1.393 (4) C10—Cl2 1.737 (2)
C2—C13 1.502 (4) C11—C12 1.377 (4)
C3—C4 1.378 (5) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.374 (4) C13—H13A 0.9600
C4—C14 1.515 (4) C13—H13B 0.9600
C5—C6 1.372 (4) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C12 1.389 (3) C14—H14C 0.9600
C7—C8 1.393 (3) N1—S1 1.645 (2)
C7—N1 1.416 (3) N1—H1N 0.853 (18)
C8—C9 1.384 (3) O1—S1 1.424 (2)
C8—Cl1 1.722 (2) O2—S1 1.4311 (19)
C6—C1—C2 120.8 (2) C11—C10—Cl2 119.1 (2)
C6—C1—S1 115.43 (19) C12—C11—C10 118.7 (2)
C2—C1—S1 123.7 (2) C12—C11—H11 120.6
C3—C2—C1 115.9 (3) C10—C11—H11 120.6
C3—C2—C13 118.1 (3) C11—C12—C7 121.4 (2)
C1—C2—C13 125.9 (3) C11—C12—H12 119.3
C4—C3—C2 123.9 (3) C7—C12—H12 119.3
C4—C3—H3 118.1 C2—C13—H13A 109.5
C2—C3—H3 118.1 C2—C13—H13B 109.5
C5—C4—C3 118.2 (3) H13A—C13—H13B 109.5
C5—C4—C14 121.1 (3) C2—C13—H13C 109.5
C3—C4—C14 120.7 (3) H13A—C13—H13C 109.5
C6—C5—C4 120.4 (3) H13B—C13—H13C 109.5
C6—C5—H5 119.8 C4—C14—H14A 109.5
C4—C5—H5 119.8 C4—C14—H14B 109.5
C5—C6—C1 120.8 (3) H14A—C14—H14B 109.5
C5—C6—H6 119.6 C4—C14—H14C 109.5
C1—C6—H6 119.6 H14A—C14—H14C 109.5
C12—C7—C8 118.3 (2) H14B—C14—H14C 109.5
C12—C7—N1 119.8 (2) C7—N1—S1 120.33 (16)
C8—C7—N1 121.9 (2) C7—N1—H1N 115 (2)
C9—C8—C7 121.2 (2) S1—N1—H1N 110 (2)
C9—C8—Cl1 118.61 (18) O1—S1—O2 119.34 (13)
C7—C8—Cl1 120.21 (19) O1—S1—N1 106.94 (12)
C10—C9—C8 118.6 (2) O2—S1—N1 104.56 (11)
C10—C9—H9 120.7 O1—S1—C1 110.04 (12)
C8—C9—H9 120.7 O2—S1—C1 108.11 (12)
C9—C10—C11 121.8 (2) N1—S1—C1 107.11 (11)
C9—C10—Cl2 119.1 (2)
C6—C1—C2—C3 1.3 (4) C8—C9—C10—C11 −1.5 (4)
S1—C1—C2—C3 −175.4 (2) C8—C9—C10—Cl2 −179.91 (18)
C6—C1—C2—C13 −179.0 (3) C9—C10—C11—C12 1.0 (4)
S1—C1—C2—C13 4.4 (4) Cl2—C10—C11—C12 179.3 (2)
C1—C2—C3—C4 −0.2 (4) C10—C11—C12—C7 0.7 (4)
C13—C2—C3—C4 −180.0 (3) C8—C7—C12—C11 −1.7 (4)
C2—C3—C4—C5 −1.8 (5) N1—C7—C12—C11 −179.3 (2)
C2—C3—C4—C14 178.7 (3) C12—C7—N1—S1 −74.9 (3)
C3—C4—C5—C6 2.6 (5) C8—C7—N1—S1 107.6 (2)
C14—C4—C5—C6 −177.8 (3) C7—N1—S1—O1 48.1 (2)
C4—C5—C6—C1 −1.6 (4) C7—N1—S1—O2 175.56 (18)
C2—C1—C6—C5 −0.4 (4) C7—N1—S1—C1 −69.8 (2)
S1—C1—C6—C5 176.5 (2) C6—C1—S1—O1 151.8 (2)
C12—C7—C8—C9 1.1 (4) C2—C1—S1—O1 −31.4 (3)
N1—C7—C8—C9 178.6 (2) C6—C1—S1—O2 19.9 (2)
C12—C7—C8—Cl1 −178.02 (18) C2—C1—S1—O2 −163.3 (2)
N1—C7—C8—Cl1 −0.5 (3) C6—C1—S1—N1 −92.3 (2)
C7—C8—C9—C10 0.5 (4) C2—C1—S1—N1 84.5 (2)
Cl1—C8—C9—C10 179.62 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.85 (2) 2.24 (2) 3.056 (3) 159 (3)
N1—H1N···Cl1 0.85 (2) 2.68 (3) 3.020 (2) 105 (2)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2251).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  4. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1059. [DOI] [PMC free article] [PubMed]
  5. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1090. [DOI] [PMC free article] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  8. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045563/bq2251sup1.cif

e-66-o3144-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045563/bq2251Isup2.hkl

e-66-o3144-Isup2.hkl (129.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES