Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):o3308. doi: 10.1107/S1600536810048385

4,4′-Bipyridine–2-(carb­oxy­methyl­sulfan­yl)pyridine-3-carb­oxy­lic acid (1/1)

Xian-Rong Jiang a, Xiao-Juan Wang a, Yun-Long Feng a,*
PMCID: PMC3011421  PMID: 21589586

Abstract

In the title co-crystal, C10H8N2·C8H7NO4S, the formate group is coplanar with the pyridyl ring of the acid [dihedral angle = 6.2 (7)°], while the carb­oxy­methyl­sulfanyl group makes a C—S—C—C torsion angle of 70.2 (1)° with the pyridine ring. The dihedral angle between the pyridyl rings of the 4,4′-bipyridine mol­ecule is 27.4 (1)°. The acid and the 4,4′-bipyridine mol­ecules are involved in hydrogen bonding via carb­oxy­lic O and pyridyl N atoms. The structure is further consolidated by inter­molecular C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For related structures, see: Wang & Feng (2010); Zhu et al. (2002); Smith & Sagatys (2003).graphic file with name e-66-o3308-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·C8H7NO4S

  • M r = 369.40

  • Monoclinic, Inline graphic

  • a = 9.3684 (3) Å

  • b = 10.3044 (3) Å

  • c = 18.2264 (5) Å

  • β = 106.494 (2)°

  • V = 1687.09 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.41 × 0.25 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.935, T max = 0.978

  • 24834 measured reflections

  • 3927 independent reflections

  • 3106 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.144

  • S = 1.08

  • 3927 reflections

  • 241 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048385/pv2357sup1.cif

e-66-o3308-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048385/pv2357Isup2.hkl

e-66-o3308-Isup2.hkl (192.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2i 0.86 (2) 1.79 (2) 2.6564 (18) 178 (2)
O3—H3B⋯N3ii 0.86 (2) 1.82 (2) 2.6618 (18) 167 (2)
C4—H4A⋯O4iii 0.93 2.55 3.213 (2) 128
C15—H15A⋯O2ii 0.93 2.39 3.0664 (19) 130
C18—H18A⋯o2ii 0.93 2.70 3.232 (2) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The crystal structures of a number of mercaptonicotinic derivatives have been reported, such as 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid monohydrate (Wang et al., 2010), bis(3-carboxypyrid-2-yl)disulfide monohydrate (Zhu et al., 2002) and ammonium 2-mercaptopyridine-3-carboxylate monohydrate (Smith et al., 2003). In an attempt to synthesize a cobalt complex with 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid and 4,4'-bipyridine, we obtained the title compound, (I), unexpectedly. In this article, we report the crystal structure of (I).

The title compound is composed of 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (C8H7NO4S) and 4,4'-bipyridine (C10H8N2) (Fig. 1). In the acid moiety, the formate group is coplanar with the pyridyl ring, while the carboxymethylsulfanyl group is almost vartical to the plane formed by the pyridine ring atoms with torsion angle, C1—S1—C7—C8, 70.2 (1)°. The dihedral angle between the pyridyl rings of the 4,4'-bipyridine molecule is 27.4 (1)°. The acid and the 4,4'-bipyridine molecules are involved in hydrogen bonding via carboxylic O and pyridyl N atoms. The structure is further consolidated by intermolecular hydrogen bonds of type C—H···O (Fig. 2 and Tab. 1).

Experimental

2-(Carboxymethylsulfanyl)pyridine-3-carboxylic acid was prepared according to the literature method (Wang et al., 2010). A mixture of CoCl2.6H2O (0.2379 g, 1.0 mmol), 4,4'-bipyridine (0.0468 g, 0.3 mmol) and 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (0.2134 g, 1.0 mmol) was dissolved in 10.0 ml of distilled water and 3.0 ml ethanol at 328 K. The resulting solution was stirred and refluxed under basic condition for 2 h, the mixture was cooled to room temperature and filtered. Single crystals suitable for X-ray diffraction were obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model with C—H = 0.93 and 0.97 Å for aryl and methylene H-atoms and Uiso(H) = 1.2Ueq(C). The oxygen-bound H-atoms was located in a difference Fourier map and refined with the O—H distance restrained to 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A unit cell packing of (I); intermolecular hydrogen bonds have been depicted by dashed lines.

Crystal data

C10H8N2·C8H7NO4S F(000) = 768
Mr = 369.40 Dx = 1.454 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7490 reflections
a = 9.3684 (3) Å θ = 2.3–27.7°
b = 10.3044 (3) Å µ = 0.22 mm1
c = 18.2264 (5) Å T = 296 K
β = 106.494 (2)° Block, colourless
V = 1687.09 (9) Å3 0.41 × 0.25 × 0.10 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 3927 independent reflections
Radiation source: fine-focus sealed tube 3106 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.935, Tmax = 0.978 k = −13→13
24834 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3927 reflections (Δ/σ)max < 0.001
241 parameters Δρmax = 0.27 e Å3
2 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.58161 (5) 0.38154 (4) 0.14705 (2) 0.04516 (16)
O1 0.80222 (16) 0.58013 (13) −0.00541 (8) 0.0686 (4)
H1B 0.837 (2) 0.6539 (17) 0.0143 (12) 0.082*
O2 0.72352 (16) 0.57771 (12) 0.09792 (7) 0.0640 (4)
O3 0.70285 (16) 0.13228 (12) 0.22294 (9) 0.0705 (4)
H3B 0.740 (2) 0.0553 (17) 0.2308 (13) 0.085*
O4 0.49171 (15) 0.02161 (13) 0.18621 (8) 0.0722 (4)
N1 0.52552 (13) 0.21214 (12) 0.03258 (7) 0.0418 (3)
C1 0.58945 (15) 0.32661 (14) 0.05633 (7) 0.0368 (3)
C2 0.65886 (15) 0.40173 (13) 0.01174 (8) 0.0382 (3)
C3 0.65803 (17) 0.35450 (15) −0.05940 (9) 0.0439 (4)
H3A 0.7020 0.4022 −0.0905 0.053*
C4 0.59198 (17) 0.23668 (16) −0.08426 (8) 0.0472 (4)
H4A 0.5906 0.2035 −0.1319 0.057*
C5 0.52829 (17) 0.17006 (15) −0.03640 (9) 0.0453 (4)
H5A 0.4842 0.0904 −0.0530 0.054*
C6 0.73076 (16) 0.52758 (14) 0.03952 (8) 0.0424 (3)
C7 0.48104 (17) 0.25100 (16) 0.17466 (8) 0.0467 (4)
H7A 0.4508 0.2794 0.2187 0.056*
H7B 0.3909 0.2367 0.1333 0.056*
C8 0.5588 (2) 0.12241 (15) 0.19413 (9) 0.0475 (4)
N2 −0.08632 (19) −0.19297 (15) 0.05293 (10) 0.0635 (4)
N3 0.16287 (17) 0.40694 (14) 0.23065 (9) 0.0560 (4)
C9 0.0353 (2) −0.18397 (18) 0.11218 (13) 0.0652 (5)
H9A 0.0884 −0.2595 0.1296 0.078*
C10 −0.1626 (2) −0.0845 (2) 0.03031 (12) 0.0622 (5)
H10A −0.2482 −0.0888 −0.0108 0.075*
C11 0.08680 (19) −0.07012 (17) 0.14907 (10) 0.0551 (4)
H11A 0.1739 −0.0690 0.1893 0.066*
C12 −0.12119 (17) 0.03452 (18) 0.06467 (9) 0.0529 (4)
H12A −0.1787 0.1079 0.0472 0.064*
C13 0.00740 (16) 0.04348 (15) 0.12563 (9) 0.0415 (3)
C14 0.05830 (16) 0.16981 (15) 0.16269 (8) 0.0401 (3)
C15 0.14430 (19) 0.17679 (16) 0.23814 (9) 0.0500 (4)
H15A 0.1683 0.1018 0.2675 0.060*
C16 0.02397 (18) 0.28557 (16) 0.12271 (10) 0.0513 (4)
H16A −0.0352 0.2859 0.0722 0.062*
C17 0.0788 (2) 0.39998 (17) 0.15887 (11) 0.0584 (5)
H17A 0.0554 0.4768 0.1313 0.070*
C18 0.19387 (19) 0.29589 (19) 0.26931 (9) 0.0558 (4)
H18A 0.2520 0.2990 0.3200 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0619 (3) 0.0338 (2) 0.0371 (2) 0.00022 (15) 0.00974 (18) −0.00146 (13)
O1 0.0904 (9) 0.0499 (7) 0.0768 (9) −0.0340 (7) 0.0421 (7) −0.0215 (7)
O2 0.0957 (9) 0.0453 (7) 0.0505 (7) −0.0223 (6) 0.0201 (6) −0.0118 (5)
O3 0.0620 (8) 0.0418 (7) 0.0978 (11) 0.0049 (5) 0.0069 (7) 0.0182 (7)
O4 0.0866 (9) 0.0450 (7) 0.0837 (9) −0.0169 (6) 0.0219 (7) −0.0054 (6)
N1 0.0473 (7) 0.0326 (6) 0.0419 (6) −0.0030 (5) 0.0066 (5) −0.0008 (5)
C1 0.0382 (7) 0.0311 (7) 0.0360 (7) 0.0029 (5) 0.0021 (5) 0.0002 (5)
C2 0.0377 (7) 0.0323 (7) 0.0402 (7) 0.0007 (5) 0.0038 (6) −0.0013 (6)
C3 0.0503 (8) 0.0385 (8) 0.0432 (8) −0.0029 (6) 0.0136 (7) −0.0021 (6)
C4 0.0578 (9) 0.0420 (9) 0.0402 (7) −0.0048 (7) 0.0113 (6) −0.0091 (6)
C5 0.0513 (8) 0.0337 (8) 0.0446 (8) −0.0048 (6) 0.0035 (6) −0.0057 (6)
C6 0.0441 (7) 0.0346 (7) 0.0441 (8) −0.0022 (6) 0.0053 (6) −0.0012 (6)
C7 0.0519 (8) 0.0475 (9) 0.0423 (7) 0.0013 (7) 0.0159 (6) 0.0000 (7)
C8 0.0648 (10) 0.0396 (9) 0.0400 (8) −0.0031 (7) 0.0180 (7) 0.0010 (6)
N2 0.0739 (10) 0.0459 (9) 0.0798 (11) −0.0249 (7) 0.0365 (8) −0.0189 (8)
N3 0.0591 (8) 0.0457 (8) 0.0636 (9) −0.0107 (6) 0.0180 (7) −0.0158 (7)
C9 0.0743 (12) 0.0388 (9) 0.0883 (14) −0.0044 (8) 0.0326 (11) −0.0061 (9)
C10 0.0542 (10) 0.0619 (12) 0.0694 (12) −0.0208 (8) 0.0157 (9) −0.0180 (10)
C11 0.0557 (10) 0.0412 (9) 0.0656 (11) −0.0013 (7) 0.0129 (8) −0.0010 (7)
C12 0.0454 (8) 0.0477 (9) 0.0611 (10) −0.0055 (7) 0.0077 (7) −0.0079 (8)
C13 0.0412 (7) 0.0378 (8) 0.0466 (7) −0.0066 (6) 0.0141 (6) −0.0018 (6)
C14 0.0396 (7) 0.0361 (8) 0.0445 (7) −0.0038 (6) 0.0114 (6) −0.0025 (6)
C15 0.0582 (9) 0.0453 (9) 0.0437 (8) −0.0038 (7) 0.0097 (7) 0.0010 (7)
C16 0.0546 (9) 0.0411 (9) 0.0513 (8) −0.0014 (7) 0.0035 (7) 0.0008 (7)
C17 0.0675 (11) 0.0355 (9) 0.0692 (11) −0.0010 (7) 0.0143 (9) 0.0013 (8)
C18 0.0603 (10) 0.0592 (11) 0.0447 (8) −0.0069 (8) 0.0098 (7) −0.0095 (8)

Geometric parameters (Å, °)

S1—C1 1.7688 (14) N2—C10 1.328 (3)
S1—C7 1.7943 (17) N2—C9 1.332 (3)
O1—C6 1.3127 (19) N3—C17 1.324 (2)
O1—H1B 0.864 (16) N3—C18 1.332 (2)
O2—C6 1.2023 (19) C9—C11 1.370 (2)
O3—C8 1.305 (2) C9—H9A 0.9300
O3—H3B 0.861 (16) C10—C12 1.382 (2)
O4—C8 1.2015 (19) C10—H10A 0.9300
N1—C5 1.3373 (19) C11—C13 1.388 (2)
N1—C1 1.3379 (18) C11—H11A 0.9300
C1—C2 1.408 (2) C12—C13 1.391 (2)
C2—C3 1.383 (2) C12—H12A 0.9300
C2—C6 1.4827 (19) C13—C14 1.482 (2)
C3—C4 1.379 (2) C14—C15 1.384 (2)
C3—H3A 0.9300 C14—C16 1.387 (2)
C4—C5 1.372 (2) C15—C18 1.377 (2)
C4—H4A 0.9300 C15—H15A 0.9300
C5—H5A 0.9300 C16—C17 1.377 (2)
C7—C8 1.505 (2) C16—H16A 0.9300
C7—H7A 0.9700 C17—H17A 0.9300
C7—H7B 0.9700 C18—H18A 0.9300
C1—S1—C7 100.76 (7) C17—N3—C18 117.10 (15)
C6—O1—H1B 107.7 (15) N2—C9—C11 123.95 (18)
C8—O3—H3B 108.5 (15) N2—C9—H9A 118.0
C5—N1—C1 117.62 (13) C11—C9—H9A 118.0
N1—C1—C2 122.38 (13) N2—C10—C12 123.33 (17)
N1—C1—S1 116.80 (11) N2—C10—H10A 118.3
C2—C1—S1 120.81 (11) C12—C10—H10A 118.3
C3—C2—C1 117.85 (13) C9—C11—C13 119.21 (16)
C3—C2—C6 120.60 (14) C9—C11—H11A 120.4
C1—C2—C6 121.55 (13) C13—C11—H11A 120.4
C4—C3—C2 120.01 (14) C10—C12—C13 119.28 (16)
C4—C3—H3A 120.0 C10—C12—H12A 120.4
C2—C3—H3A 120.0 C13—C12—H12A 120.4
C5—C4—C3 117.84 (14) C11—C13—C12 117.19 (14)
C5—C4—H4A 121.1 C11—C13—C14 121.72 (13)
C3—C4—H4A 121.1 C12—C13—C14 121.08 (14)
N1—C5—C4 124.29 (14) C15—C14—C16 117.39 (14)
N1—C5—H5A 117.9 C15—C14—C13 121.31 (14)
C4—C5—H5A 117.9 C16—C14—C13 121.29 (13)
O2—C6—O1 122.82 (14) C18—C15—C14 119.29 (15)
O2—C6—C2 122.94 (14) C18—C15—H15A 120.4
O1—C6—C2 114.24 (13) C14—C15—H15A 120.4
C8—C7—S1 117.93 (12) C17—C16—C14 119.04 (15)
C8—C7—H7A 107.8 C17—C16—H16A 120.5
S1—C7—H7A 107.8 C14—C16—H16A 120.5
C8—C7—H7B 107.8 N3—C17—C16 123.77 (17)
S1—C7—H7B 107.8 N3—C17—H17A 118.1
H7A—C7—H7B 107.2 C16—C17—H17A 118.1
O4—C8—O3 124.16 (16) N3—C18—C15 123.39 (15)
O4—C8—C7 122.06 (17) N3—C18—H18A 118.3
O3—C8—C7 113.72 (14) C15—C18—H18A 118.3
C10—N2—C9 117.01 (15)
C5—N1—C1—C2 −0.4 (2) C10—N2—C9—C11 −1.7 (3)
C5—N1—C1—S1 178.95 (11) C9—N2—C10—C12 0.4 (3)
C7—S1—C1—N1 −0.26 (12) N2—C9—C11—C13 1.7 (3)
C7—S1—C1—C2 179.13 (11) N2—C10—C12—C13 0.7 (3)
N1—C1—C2—C3 0.8 (2) C9—C11—C13—C12 −0.5 (2)
S1—C1—C2—C3 −178.52 (11) C9—C11—C13—C14 −179.32 (15)
N1—C1—C2—C6 −179.22 (12) C10—C12—C13—C11 −0.6 (2)
S1—C1—C2—C6 1.43 (18) C10—C12—C13—C14 178.20 (15)
C1—C2—C3—C4 −0.7 (2) C11—C13—C14—C15 −27.4 (2)
C6—C2—C3—C4 179.39 (14) C12—C13—C14—C15 153.82 (17)
C2—C3—C4—C5 0.1 (2) C11—C13—C14—C16 151.38 (17)
C1—N1—C5—C4 −0.2 (2) C12—C13—C14—C16 −27.4 (2)
C3—C4—C5—N1 0.3 (2) C16—C14—C15—C18 −1.3 (2)
C3—C2—C6—O2 173.56 (15) C13—C14—C15—C18 177.51 (15)
C1—C2—C6—O2 −6.4 (2) C15—C14—C16—C17 1.3 (2)
C3—C2—C6—O1 −6.0 (2) C13—C14—C16—C17 −177.48 (15)
C1—C2—C6—O1 174.06 (14) C18—N3—C17—C16 −0.6 (3)
C1—S1—C7—C8 70.16 (12) C14—C16—C17—N3 −0.4 (3)
S1—C7—C8—O4 −152.53 (14) C17—N3—C18—C15 0.6 (3)
S1—C7—C8—O3 30.22 (19) C14—C15—C18—N3 0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···N2i 0.86 (2) 1.79 (2) 2.6564 (18) 178 (2)
O3—H3B···N3ii 0.86 (2) 1.82 (2) 2.6618 (18) 167 (2)
C4—H4A···O4iii 0.93 2.55 3.213 (2) 128
C15—H15A···O2ii 0.93 2.39 3.0664 (19) 130
C18—H18A···o2ii 0.93 2.70 3.232 (2) 117

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2357).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Smith, G. & Sagatys, D. S. (2003). Acta Cryst. E59, o540–o541.
  5. Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298. [DOI] [PMC free article] [PubMed]
  6. Zhu, J. X., Zhao, Y. J., Hong, M. C., Sun, D. F., Shi, Q. & Chao, R. (2002). Chem. Lett. pp. 484–500.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048385/pv2357sup1.cif

e-66-o3308-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048385/pv2357Isup2.hkl

e-66-o3308-Isup2.hkl (192.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES