Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):i78. doi: 10.1107/S1600536810045198

K2LaCl5

Christian M Schurz a, Thomas Schleid a, Gerd Meyer b,*
PMCID: PMC3011500  PMID: 21589201

Abstract

The ternary title compound, dipotassium lanthanum penta­chloride, K2LaCl5, is isotypic with Y2HfS5 and various ternary rare-earth metal(III) halides with the general formula A 2 MX 5 (A = NH4, InI, Na–Cs; M = La–Dy; X = Cl–I). The La3+ cations and three of the four symmetry-independent chloride anions are located on a crystallographic mirror plane. The La3+ cations are surrounded by seven chloride anions, each in the shape of a monocapped trigonal prism, whereas the coordination spheres of the K+ cations exhibit one more cap. Three of the four independent chloride anions reside in a fivefold cationic coordination, leading to distorted square pyramids. The fourth chloride anion has only four cationic neighbours, forming no specific polyhedron.

Related literature

For the U3 Ch 5-type structure (Ch = S and Se) and its relationship to Y2HfS5, see: Moseley et al. (1972); Potel et al. (1972); Jeitschko & Donohue (1975). For the low-temperature phase of Yb5Sb3, see: Brunton & Steinfink (1971). For the series of the ternary rare-earth metal(III) halides with A = NH4, InI, Na – Cs; M = La – Dy; X = Cl – I, see: Meyer & Hüttl (1983); Meyer et al. (1985); Wickleder & Meyer (1995).

Experimental

Crystal data

  • K2LaCl5

  • M r = 394.36

  • Orthorhombic, Inline graphic

  • a = 12.7402 (8) Å

  • b = 8.8635 (6) Å

  • c = 8.0174 (5) Å

  • V = 905.35 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.02 mm−1

  • T = 293 K

  • 0.33 × 0.28 × 0.24 mm

Data collection

  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) T min = 0.106, T max = 0.185

  • 12421 measured reflections

  • 1650 independent reflections

  • 872 reflections with I > 2σ(I)

  • R int = 0.139

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.142

  • S = 0.90

  • 1650 reflections

  • 44 parameters

  • Δρmax = 1.58 e Å−3

  • Δρmin = −2.64 e Å−3

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045198/bt5401sup1.cif

e-66-00i78-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045198/bt5401Isup2.hkl

e-66-00i78-Isup2.hkl (81.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

K—Cl1i 3.160 (3)
K—Cl2 3.177 (3)
K—Cl1ii 3.206 (3)
K—Cl2iii 3.234 (3)
K—Cl3iv 3.272 (4)
K—Cl4 3.304 (3)
K—Cl4iii 3.327 (3)
K—Cl3 3.351 (4)
La—Cl3v 2.812 (3)
La—Cl1i 2.833 (3)
La—Cl2vi 2.845 (3)
La—Cl4 2.858 (2)
La—Cl4vii 2.858 (2)
La—Cl4viii 2.895 (2)
La—Cl4ix 2.895 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

Financial support by the state of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Furthermore our thanks go to Dr Falk Lissner for the data collection.

supplementary crystallographic information

Comment

The ternary rare-earth metal(III) halide K2LaCl5 (Fig. 1) belongs to the A2MX5 series (A = NH4, In, Na – Cs; M = La – Dy; X = Cl – I) (Meyer & Hüttl, 1983; Meyer et al., 1985; Wickleder & Meyer 1995). It can be described as ordered structural variety of U3Ch5 (Ch = S and Se) or the low-temperature phase of Yb5Sb3, respectively, as anti-isotypical arrangement. While the K+ cations have eight contacts to Cl- anions (Fig. 2), the La3+ cations are surrounded by only seven of them. In both cases distorted mono- or bicapped trigonal prisms [LaCl7]4– or [KCl8]7– originate. For the lanthanum bearing ones they are linked via common edges and form chains, which run along [010] (Fig. 3). Together with the chloride anions (Cl1)-, (Cl2)and (Cl3)-, La3+ occupies the 4c position and shows the site symmetry m, while the (Cl4)- anion and the K+ cation are located at the 8d position with the site symmetry 1.

Experimental

Colourless, transparent, brick-shaped single crystals of K2LaCl5 were obtained as by-product from the reaction of potassium azide (KN3), lanthanum (La), the corresponding sesquioxide (La2O3) and trichloride (LaCl3) in the presence of KCl as flux with the purpose to synthesize K2La4ONCl9. The mixture was transferred into a torch-sealed, evacuated, fused silica vessel, heated at 1123 K for seven days, followed by cooling to room temperature within 24 h.

Figures

Fig. 1.

Fig. 1.

Crystal structure of K2LaCl5 as viewed along [010].

Fig. 2.

Fig. 2.

Coordination sphere of the K+ cations with the shape of a bicapped trigonal prism. [Symmetry codes: (i) –x+1/2, –y + 1, z–1/2; (ii) x+1/2, y, –z+3/2; (iii) –x+3/2, –y + 1, z+1/2; (iv) –x+3/2, –y + 1, z–1/2.]

Fig. 3.

Fig. 3.

View at the chain formed by edge-sharing monocapped trigonal prisms [LaCl7]4– with its contacts to the K+ cations. Displacement ellipsoids are drawn at 90% probability level.

Crystal data

K2LaCl5 F(000) = 720
Mr = 394.36 Dx = 2.893 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n θ = 3.4–33.0°
a = 12.7402 (8) Å µ = 7.02 mm1
b = 8.8635 (6) Å T = 293 K
c = 8.0174 (5) Å Bricks, colourless
V = 905.35 (10) Å3 0.33 × 0.28 × 0.24 mm
Z = 4

Data collection

Stoe IPDS-I diffractometer 1650 independent reflections
Radiation source: fine-focus sealed tube 872 reflections with I > 2σ(I)
graphite Rint = 0.139
imaging plate detector system scans θmax = 33.0°, θmin = 3.4°
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) h = −19→19
Tmin = 0.106, Tmax = 0.185 k = −11→11
12421 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0799P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142 (Δ/σ)max = 0.004
S = 0.90 Δρmax = 1.58 e Å3
1650 reflections Δρmin = −2.64 e Å3
44 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0094 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K 0.67125 (15) 0.4946 (3) 0.5481 (3) 0.0379 (5)
La 0.50680 (5) 0.2500 0.07776 (8) 0.0248 (2)
Cl1 −0.0065 (2) 0.7500 0.9311 (4) 0.0310 (6)
Cl2 0.7911 (2) 0.2500 0.3299 (4) 0.0333 (7)
Cl3 0.6828 (2) 0.2500 0.8662 (4) 0.0374 (8)
Cl4 0.57990 (17) 0.5441 (3) 0.1663 (3) 0.0342 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K 0.0381 (10) 0.0363 (14) 0.0393 (11) 0.0014 (8) −0.0014 (7) −0.0070 (9)
La 0.0286 (3) 0.0234 (4) 0.0222 (3) 0.000 0.0022 (3) 0.000
Cl1 0.0347 (13) 0.0354 (17) 0.0228 (11) 0.000 0.0016 (12) 0.000
Cl2 0.0282 (13) 0.039 (2) 0.0322 (15) 0.000 0.0006 (11) 0.000
Cl3 0.0368 (15) 0.045 (2) 0.0308 (15) 0.000 0.0088 (12) 0.000
Cl4 0.0460 (12) 0.0267 (13) 0.0301 (10) −0.0030 (9) −0.0102 (8) 0.0025 (8)

Geometric parameters (Å, °)

K—Cl1i 3.160 (3) La—Cl4x 2.895 (2)
K—Cl2 3.177 (3) La—Kvi 4.389 (2)
K—Cl1ii 3.206 (3) La—Kxi 4.389 (2)
K—Cl2iii 3.234 (3) Cl1—Laxii 2.833 (3)
K—Cl3iv 3.272 (4) Cl1—Kxii 3.160 (3)
K—Cl4 3.304 (3) Cl1—Kxiii 3.160 (3)
K—Cl4iii 3.327 (3) Cl1—Kxiv 3.206 (3)
K—Cl3 3.351 (4) Cl1—Kxv 3.206 (3)
K—Kv 4.336 (5) Cl2—Laxvi 2.845 (3)
K—Lavi 4.389 (2) Cl2—Kv 3.177 (3)
K—Kvi 4.432 (4) Cl2—Kxvii 3.234 (3)
K—Kiii 4.4838 (18) Cl2—Kiv 3.234 (3)
La—Cl3vii 2.812 (3) Cl3—Laxviii 2.812 (3)
La—Cl1i 2.833 (3) Cl3—Kiii 3.272 (4)
La—Cl2viii 2.845 (3) Cl3—Kxix 3.272 (3)
La—Cl4 2.858 (2) Cl3—Kv 3.351 (4)
La—Cl4v 2.858 (2) Cl4—Lax 2.895 (2)
La—Cl4ix 2.895 (2) Cl4—Kiv 3.327 (3)
Cl1i—K—Cl2 71.80 (8) Cl3vii—La—Cl4 83.68 (6)
Cl1i—K—Cl1ii 91.76 (5) Cl1i—La—Cl4 75.64 (5)
Cl2—K—Cl1ii 148.21 (10) Cl2viii—La—Cl4 104.48 (5)
Cl1i—K—Cl2iii 141.81 (10) Cl3vii—La—Cl4v 83.68 (6)
Cl2—K—Cl2iii 142.29 (7) Cl1i—La—Cl4v 75.64 (5)
Cl1ii—K—Cl2iii 64.80 (8) Cl2viii—La—Cl4v 104.48 (5)
Cl1i—K—Cl3iv 136.03 (10) Cl4—La—Cl4v 131.62 (9)
Cl2—K—Cl3iv 87.34 (7) Cl3vii—La—Cl4ix 84.06 (7)
Cl1ii—K—Cl3iv 86.34 (8) Cl1i—La—Cl4ix 132.50 (6)
Cl2iii—K—Cl3iv 75.11 (8) Cl2viii—La—Cl4ix 78.89 (7)
Cl1i—K—Cl4 65.30 (7) Cl4—La—Cl4ix 150.15 (6)
Cl2—K—Cl4 75.52 (8) Cl4v—La—Cl4ix 73.58 (7)
Cl1ii—K—Cl4 72.88 (8) Cl3vii—La—Cl4x 84.06 (7)
Cl2iii—K—Cl4 127.34 (10) Cl1i—La—Cl4x 132.50 (6)
Cl3iv—K—Cl4 72.27 (8) Cl2viii—La—Cl4x 78.89 (7)
Cl1i—K—Cl4iii 130.30 (10) Cl4—La—Cl4x 73.58 (7)
Cl2—K—Cl4iii 68.18 (8) Cl4v—La—Cl4x 150.15 (6)
Cl1ii—K—Cl4iii 136.98 (9) Cl4ix—La—Cl4x 78.15 (9)
Cl2iii—K—Cl4iii 74.46 (8) Cl3vii—La—Kvi 145.53 (4)
Cl3iv—K—Cl4iii 69.93 (8) Cl1i—La—Kvi 46.84 (5)
Cl4—K—Cl4iii 127.83 (9) Cl2viii—La—Kvi 47.41 (5)
Cl1i—K—Cl3 79.12 (8) Cl4—La—Kvi 61.85 (6)
Cl2—K—Cl3 87.50 (8) Cl4v—La—Kvi 117.97 (6)
Cl1ii—K—Cl3 116.64 (9) Cl4ix—La—Kvi 126.15 (5)
Cl2iii—K—Cl3 85.10 (7) Cl4x—La—Kvi 86.55 (6)
Cl3iv—K—Cl3 139.63 (8) Cl3vii—La—Kxi 145.53 (4)
Cl4—K—Cl3 143.76 (10) Cl1i—La—Kxi 46.84 (5)
Cl4iii—K—Cl3 71.00 (8) Cl2viii—La—Kxi 47.41 (5)
Cl1i—K—Kv 46.68 (5) Cl4—La—Kxi 117.97 (6)
Cl2—K—Kv 46.96 (6) Cl4v—La—Kxi 61.85 (6)
Cl1ii—K—Kv 134.91 (5) Cl4ix—La—Kxi 86.55 (6)
Cl2iii—K—Kv 134.42 (6) Cl4x—La—Kxi 126.15 (6)
Cl3iv—K—Kv 133.77 (6) Kvi—La—Kxi 62.09 (7)
Cl4—K—Kv 97.63 (6) Laxii—Cl1—Kxii 107.21 (8)
Cl4iii—K—Kv 84.07 (6) Laxii—Cl1—Kxiii 107.21 (8)
Cl3—K—Kv 49.68 (5) Kxii—Cl1—Kxiii 86.64 (11)
Cl1i—K—Lavi 102.32 (7) Laxii—Cl1—Kxiv 93.04 (7)
Cl2—K—Lavi 167.59 (9) Kxii—Cl1—Kxiv 159.73 (10)
Cl1ii—K—Lavi 40.13 (5) Kxiii—Cl1—Kxiv 88.24 (5)
Cl2iii—K—Lavi 40.37 (6) Laxii—Cl1—Kxv 93.04 (7)
Cl3iv—K—Lavi 103.97 (7) Kxii—Cl1—Kxv 88.24 (5)
Cl4—K—Lavi 112.49 (7) Kxiii—Cl1—Kxv 159.73 (10)
Cl4iii—K—Lavi 110.55 (6) Kxiv—Cl1—Kxv 89.82 (11)
Cl3—K—Lavi 80.57 (6) Laxvi—Cl2—Kv 108.72 (9)
Kv—K—Lavi 121.04 (3) Laxvi—Cl2—K 108.72 (9)
Cl1i—K—Kvi 46.30 (6) Kv—Cl2—K 86.07 (11)
Cl2—K—Kvi 113.09 (10) Laxvi—Cl2—Kxvii 92.22 (8)
Cl1ii—K—Kvi 45.45 (6) Kv—Cl2—Kxvii 88.75 (3)
Cl2iii—K—Kvi 104.62 (9) K—Cl2—Kxvii 159.00 (11)
Cl3iv—K—Kvi 117.84 (10) Laxvi—Cl2—Kiv 92.22 (8)
Cl4—K—Kvi 59.28 (6) Kv—Cl2—Kiv 159.00 (11)
Cl4iii—K—Kvi 171.90 (11) K—Cl2—Kiv 88.75 (3)
Cl3—K—Kvi 100.93 (9) Kxvii—Cl2—Kiv 88.84 (11)
Kv—K—Kvi 91.23 (7) Laxviii—Cl3—Kiii 100.62 (8)
Lavi—K—Kvi 66.36 (5) Laxviii—Cl3—Kxix 100.62 (8)
Cl1i—K—Kiii 125.25 (10) Kiii—Cl3—Kxix 87.54 (11)
Cl2—K—Kiii 106.95 (10) Laxviii—Cl3—K 115.09 (9)
Cl1ii—K—Kiii 104.75 (8) Kiii—Cl3—K 85.21 (4)
Cl2iii—K—Kiii 45.10 (6) Kxix—Cl3—K 144.27 (10)
Cl3iv—K—Kiii 97.44 (9) Laxviii—Cl3—Kv 115.10 (9)
Cl4—K—Kiii 169.44 (11) Kiii—Cl3—Kv 144.27 (10)
Cl4iii—K—Kiii 47.24 (6) Kxix—Cl3—Kv 85.21 (4)
Cl3—K—Kiii 46.65 (6) K—Cl3—Kv 80.64 (10)
Kv—K—Kiii 91.22 (6) La—Cl4—Lax 106.42 (7)
Lavi—K—Kiii 67.00 (4) La—Cl4—K 102.93 (8)
Kvi—K—Kiii 126.56 (8) Lax—Cl4—K 147.62 (10)
Cl3vii—La—Cl1i 127.18 (9) La—Cl4—Kiv 98.37 (8)
Cl3vii—La—Cl2viii 157.97 (10) Lax—Cl4—Kiv 103.65 (8)
Cl1i—La—Cl2viii 74.85 (9) K—Cl4—Kiv 85.10 (6)

Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1/2, y, −z+3/2; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) x, −y+1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x, y, z−1; (viii) x−1/2, y, −z+1/2; (ix) −x+1, y−1/2, −z; (x) −x+1, −y+1, −z; (xi) −x+1, y−1/2, −z+1; (xii) −x+1/2, −y+1, z+1/2; (xiii) −x+1/2, y+1/2, z+1/2; (xiv) x−1/2, −y+3/2, −z+3/2; (xv) x−1/2, y, −z+3/2; (xvi) x+1/2, y, −z+1/2; (xvii) −x+3/2, y−1/2, z−1/2; (xviii) x, y, z+1; (xix) −x+3/2, y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5401).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Brunton, G. D. & Steinfink, H. (1971). Inorg. Chem.10, 2301–2303.
  3. Jeitschko, W. & Donohue, P. C. (1975). Acta Cryst. B31, 1890–1895.
  4. Meyer, G. & Hüttl, E. (1983). Z. Anorg. Allg. Chem.497, 191–198.
  5. Meyer, G., Soose, J., Moritz, A., Vitt, V. & Holljes, Th. (1985). Z. Anorg. Allg. Chem.521, 161–172.
  6. Moseley, P. T., Brown, D. & Whittaker, B. (1972). Acta Cryst. B28, 1816–1821.
  7. Potel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Acad. Sci. Paris, 275, 1419–1421.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (1992). DIF4 and REDU4 Stoe & Cie, Darmstadt, Germany.
  10. Stoe & Cie (1999). X-SHAPE Stoe & Cie, Darmstadt, Germany.
  11. Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem.621, 740–742.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045198/bt5401sup1.cif

e-66-00i78-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045198/bt5401Isup2.hkl

e-66-00i78-Isup2.hkl (81.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES