Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):o3302. doi: 10.1107/S1600536810048361

3-(4-Fluoro­phenyl­sulfon­yl)-2-methyl­naphtho­[1,2-b]furan

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3011502  PMID: 21589581

Abstract

In the title compound, C19H13FO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 68.59 (5)° with the mean plane of the naphtho­furan fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O, C—H⋯F and C—H⋯π inter­actions. The crystal structure also exhibits aromatic π–π inter­actions between the central benzene and the outer benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.650 (3) Å].

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003). For our previous structural studies of related 3-aryl­sulfonyl-2-methyl­naphtho­[1,2-b]furan derivatives, see: Choi et al. (2008a,b ).graphic file with name e-66-o3302-scheme1.jpg

Experimental

Crystal data

  • C19H13FO3S

  • M r = 340.35

  • Orthorhombic, Inline graphic

  • a = 8.1456 (3) Å

  • b = 18.4472 (5) Å

  • c = 10.3618 (4) Å

  • V = 1557.00 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.30 × 0.25 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.664, T max = 0.746

  • 7603 measured reflections

  • 2719 independent reflections

  • 2502 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.075

  • S = 1.05

  • 2719 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), 830 Friedel pairs

  • Flack parameter: 0.09 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048361/sj5062sup1.cif

e-66-o3302-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048361/sj5062Isup2.hkl

e-66-o3302-Isup2.hkl (133.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14–C19 4-fluoro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.95 2.46 3.379 (2) 163
C15—H15⋯F1ii 0.95 2.53 3.150 (3) 123
C16—H16⋯O3iii 0.95 2.44 3.380 (2) 170
C4—H4⋯Cg1iv 0.95 2.75 3.625 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan City.

supplementary crystallographic information

Comment

Many compounds containing a naphthofuran moiety show diverse pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn et al., 1984, Hranjec et al., 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 3-arylsulfonyl-2-methylnaphtho[1,2-b]furan analogues (Choi et al., 2008a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran ring and the 4-fluorophenyl ring is 68.59 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O and C–H···F hydrogen bonds; the first one between a benzene H atom and the oxygen of the O═S═O unit (Table 1; C8–H8···O3i), and the second one between the 4–fluorophenyl H atom and the oxygen of the O═S═O unit (Table 1; C16–H16···O3iii), and the third one between the 4-fluorophenyl H atom and the fluorine (Table 1; C15–H15···F1ii). The crystal packing (Fig. 3) is also exhibits an intermolecular C–H..π interaction between a benzene H atom and the 4-fluorophenyl ring (Table 1; C4–H4···Cg1iv, Cg1 is the centroid of the C14-C19 4-fluorophenyl ring). The crystal packing (Fig. 3) is further stabilized by an aromatic π–π interaction between the central benzene and the outer benzene rings of neighbouring molecules. The Cg2···Cg3viii distance is 3.650 (3) Å (Cg2 and Cg3 are the centroids of the C2/C3/C4/C5/C10/C11 benzene ring and the C5-C10 benzene ring, respectively).

Experimental

77% 3-chloroperoxybenzoic acid (493 mg, 2.2 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2-methylnaphtho [1,2-b]furan (339 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 439-440 K; Rf = 0.55 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of C–H···O and C–H···F interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x +1/2, y - 1/2, z - 1/2; (ii) - x + 2, - y + 1, z + 1/2; (iii) x + 1, y, z; (v) - x +1/2, y + 1/2, z + 1/2; (vi) - x + 2, - y + 1, z - 1/2 ; (vii) x - 1, y, z.]

Fig. 3.

Fig. 3.

A view of C–H···π and π–π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (iv) - x + 1, - y + 1, z - 1/2 ; (viii) x + 1/2, - y + 1/2, z; (ix) - x + 1, - y + 1 , z + 1/2.]

Crystal data

C19H13FO3S F(000) = 704
Mr = 340.35 Dx = 1.452 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3161 reflections
a = 8.1456 (3) Å θ = 2.3–27.5°
b = 18.4472 (5) Å µ = 0.23 mm1
c = 10.3618 (4) Å T = 173 K
V = 1557.00 (9) Å3 Block, colourless
Z = 4 0.30 × 0.25 × 0.12 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2719 independent reflections
Radiation source: rotating anode 2502 reflections with I > 2σ(I)
graphite multilayer Rint = 0.026
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.2°
φ and ω scans h = −10→4
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −23→22
Tmin = 0.664, Tmax = 0.746 l = −10→13
7603 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.1905P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2719 reflections Δρmax = 0.25 e Å3
218 parameters Δρmin = −0.23 e Å3
1 restraint Absolute structure: Flack (1983), 830 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.52554 (5) 0.41581 (2) 0.52995 (6) 0.02619 (12)
F1 1.07897 (19) 0.56345 (10) 0.29185 (19) 0.0694 (5)
O1 0.46264 (16) 0.22234 (6) 0.38327 (16) 0.0295 (3)
O2 0.57654 (19) 0.39444 (8) 0.65655 (16) 0.0367 (4)
O3 0.38342 (15) 0.46132 (7) 0.51578 (19) 0.0351 (4)
C1 0.4869 (2) 0.33848 (9) 0.4394 (2) 0.0256 (4)
C2 0.3939 (2) 0.33602 (9) 0.3211 (2) 0.0262 (4)
C3 0.3171 (2) 0.38737 (10) 0.2398 (2) 0.0294 (5)
H3 0.3221 0.4377 0.2585 0.035*
C4 0.2358 (2) 0.36252 (10) 0.1336 (2) 0.0321 (5)
H4 0.1835 0.3965 0.0784 0.039*
C5 0.2264 (2) 0.28691 (11) 0.1021 (2) 0.0316 (5)
C6 0.1433 (3) 0.26263 (12) −0.0094 (2) 0.0399 (6)
H6 0.0923 0.2967 −0.0653 0.048*
C7 0.1359 (3) 0.18989 (13) −0.0374 (3) 0.0475 (6)
H7 0.0807 0.1740 −0.1130 0.057*
C8 0.2087 (3) 0.13917 (11) 0.0444 (3) 0.0447 (6)
H8 0.2016 0.0891 0.0240 0.054*
C9 0.2901 (3) 0.16034 (10) 0.1534 (3) 0.0371 (5)
H9 0.3390 0.1253 0.2084 0.044*
C10 0.3008 (2) 0.23490 (9) 0.1835 (2) 0.0294 (5)
C11 0.3834 (2) 0.26340 (9) 0.2913 (2) 0.0276 (4)
C12 0.5250 (2) 0.26895 (10) 0.4729 (2) 0.0286 (4)
C13 0.6087 (3) 0.23448 (11) 0.5836 (3) 0.0382 (5)
H13A 0.6786 0.1949 0.5524 0.057*
H13B 0.5266 0.2151 0.6435 0.057*
H13C 0.6764 0.2706 0.6281 0.057*
C14 0.6915 (2) 0.45978 (9) 0.4545 (2) 0.0251 (4)
C15 0.8504 (2) 0.44194 (10) 0.4931 (2) 0.0304 (5)
H15 0.8679 0.4059 0.5572 0.036*
C16 0.9823 (3) 0.47724 (12) 0.4372 (3) 0.0386 (5)
H16 1.0917 0.4664 0.4624 0.046*
C17 0.9511 (3) 0.52791 (13) 0.3451 (3) 0.0423 (6)
C18 0.7955 (3) 0.54585 (13) 0.3041 (3) 0.0455 (6)
H18 0.7794 0.5813 0.2388 0.055*
C19 0.6633 (3) 0.51109 (11) 0.3605 (2) 0.0359 (5)
H19 0.5544 0.5224 0.3346 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0226 (2) 0.02804 (19) 0.0279 (3) 0.00002 (15) 0.0020 (3) −0.0023 (2)
F1 0.0527 (9) 0.1072 (12) 0.0483 (10) −0.0428 (9) 0.0082 (9) 0.0102 (10)
O1 0.0281 (7) 0.0237 (6) 0.0368 (9) 0.0001 (5) 0.0003 (6) 0.0019 (6)
O2 0.0381 (8) 0.0429 (7) 0.0291 (9) −0.0014 (6) 0.0014 (8) 0.0032 (7)
O3 0.0239 (6) 0.0338 (6) 0.0477 (11) 0.0044 (5) 0.0033 (8) −0.0078 (8)
C1 0.0223 (8) 0.0251 (8) 0.0293 (12) −0.0009 (6) 0.0016 (9) −0.0008 (9)
C2 0.0229 (9) 0.0256 (8) 0.0301 (12) −0.0012 (7) 0.0028 (9) −0.0025 (8)
C3 0.0295 (10) 0.0241 (8) 0.0344 (13) −0.0008 (7) 0.0016 (9) −0.0006 (8)
C4 0.0329 (10) 0.0325 (8) 0.0310 (13) 0.0016 (8) 0.0001 (10) 0.0035 (9)
C5 0.0257 (10) 0.0358 (10) 0.0332 (12) −0.0049 (8) 0.0040 (9) −0.0025 (9)
C6 0.0381 (11) 0.0440 (12) 0.0375 (14) −0.0043 (9) 0.0003 (10) −0.0036 (10)
C7 0.0465 (13) 0.0545 (14) 0.0416 (15) −0.0139 (10) 0.0016 (13) −0.0153 (12)
C8 0.0481 (12) 0.0354 (9) 0.0506 (17) −0.0112 (9) 0.0099 (14) −0.0125 (12)
C9 0.0361 (11) 0.0291 (9) 0.0459 (15) −0.0062 (8) 0.0074 (11) −0.0035 (10)
C10 0.0263 (9) 0.0275 (9) 0.0346 (12) −0.0032 (7) 0.0077 (9) −0.0040 (8)
C11 0.0239 (9) 0.0252 (8) 0.0338 (11) −0.0008 (7) 0.0039 (9) 0.0013 (8)
C12 0.0227 (9) 0.0297 (9) 0.0335 (12) −0.0007 (7) 0.0036 (9) 0.0019 (9)
C13 0.0352 (11) 0.0347 (10) 0.0448 (15) 0.0048 (9) −0.0024 (11) 0.0075 (10)
C14 0.0219 (8) 0.0271 (8) 0.0263 (11) −0.0021 (7) 0.0002 (8) −0.0029 (8)
C15 0.0263 (9) 0.0306 (9) 0.0343 (13) 0.0027 (7) −0.0029 (8) −0.0025 (8)
C16 0.0252 (9) 0.0505 (12) 0.0400 (15) −0.0028 (8) −0.0008 (10) −0.0093 (12)
C17 0.0389 (12) 0.0574 (13) 0.0307 (14) −0.0206 (10) 0.0064 (11) −0.0057 (12)
C18 0.0508 (14) 0.0525 (12) 0.0333 (14) −0.0185 (11) −0.0082 (12) 0.0124 (12)
C19 0.0355 (11) 0.0384 (9) 0.0339 (13) −0.0074 (8) −0.0086 (10) 0.0057 (10)

Geometric parameters (Å, °)

S1—O2 1.4313 (18) C7—H7 0.9500
S1—O3 1.4375 (13) C8—C9 1.366 (4)
S1—C1 1.736 (2) C8—H8 0.9500
S1—C14 1.7596 (19) C9—C10 1.413 (2)
F1—C17 1.348 (2) C9—H9 0.9500
O1—C12 1.364 (3) C10—C11 1.406 (3)
O1—C11 1.378 (3) C12—C13 1.478 (3)
C1—C12 1.365 (3) C13—H13A 0.9800
C1—C2 1.442 (3) C13—H13B 0.9800
C2—C11 1.377 (2) C13—H13C 0.9800
C2—C3 1.414 (3) C14—C19 1.378 (3)
C3—C4 1.364 (3) C14—C15 1.394 (3)
C3—H3 0.9500 C15—C16 1.384 (3)
C4—C5 1.434 (3) C15—H15 0.9500
C4—H4 0.9500 C16—C17 1.360 (4)
C5—C6 1.412 (3) C16—H16 0.9500
C5—C10 1.414 (3) C17—C18 1.377 (3)
C6—C7 1.374 (3) C18—C19 1.382 (3)
C6—H6 0.9500 C18—H18 0.9500
C7—C8 1.395 (4) C19—H19 0.9500
O2—S1—O3 119.22 (11) C11—C10—C9 124.7 (2)
O2—S1—C1 108.75 (9) C11—C10—C5 115.16 (16)
O3—S1—C1 106.18 (9) C9—C10—C5 120.2 (2)
O2—S1—C14 108.11 (10) C2—C11—O1 110.52 (19)
O3—S1—C14 107.71 (9) C2—C11—C10 124.85 (19)
C1—S1—C14 106.15 (10) O1—C11—C10 124.62 (15)
C12—O1—C11 107.39 (14) O1—C12—C1 109.55 (19)
C12—C1—C2 107.83 (17) O1—C12—C13 115.41 (16)
C12—C1—S1 126.42 (18) C1—C12—C13 135.0 (2)
C2—C1—S1 125.49 (14) C12—C13—H13A 109.5
C11—C2—C3 119.37 (19) C12—C13—H13B 109.5
C11—C2—C1 104.71 (18) H13A—C13—H13B 109.5
C3—C2—C1 135.91 (17) C12—C13—H13C 109.5
C4—C3—C2 118.08 (16) H13A—C13—H13C 109.5
C4—C3—H3 121.0 H13B—C13—H13C 109.5
C2—C3—H3 121.0 C19—C14—C15 121.31 (19)
C3—C4—C5 122.4 (2) C19—C14—S1 120.18 (15)
C3—C4—H4 118.8 C15—C14—S1 118.50 (16)
C5—C4—H4 118.8 C16—C15—C14 119.3 (2)
C6—C5—C10 118.56 (18) C16—C15—H15 120.3
C6—C5—C4 121.3 (2) C14—C15—H15 120.3
C10—C5—C4 120.1 (2) C17—C16—C15 118.2 (2)
C7—C6—C5 120.2 (2) C17—C16—H16 120.9
C7—C6—H6 119.9 C15—C16—H16 120.9
C5—C6—H6 119.9 F1—C17—C16 118.5 (2)
C6—C7—C8 120.6 (2) F1—C17—C18 117.9 (2)
C6—C7—H7 119.7 C16—C17—C18 123.6 (2)
C8—C7—H7 119.7 C17—C18—C19 118.4 (2)
C9—C8—C7 121.1 (2) C17—C18—H18 120.8
C9—C8—H8 119.4 C19—C18—H18 120.8
C7—C8—H8 119.4 C14—C19—C18 119.2 (2)
C8—C9—C10 119.4 (2) C14—C19—H19 120.4
C8—C9—H9 120.3 C18—C19—H19 120.4
C10—C9—H9 120.3
O2—S1—C1—C12 −10.6 (2) C1—C2—C11—C10 179.16 (19)
O3—S1—C1—C12 −140.05 (17) C12—O1—C11—C2 −0.1 (2)
C14—S1—C1—C12 105.50 (18) C12—O1—C11—C10 −179.04 (19)
O2—S1—C1—C2 162.76 (16) C9—C10—C11—C2 −179.9 (2)
O3—S1—C1—C2 33.3 (2) C5—C10—C11—C2 0.6 (3)
C14—S1—C1—C2 −81.12 (18) C9—C10—C11—O1 −1.1 (3)
C12—C1—C2—C11 −0.3 (2) C5—C10—C11—O1 179.34 (18)
S1—C1—C2—C11 −174.67 (15) C11—O1—C12—C1 −0.1 (2)
C12—C1—C2—C3 178.4 (2) C11—O1—C12—C13 177.31 (18)
S1—C1—C2—C3 4.0 (3) C2—C1—C12—O1 0.2 (2)
C11—C2—C3—C4 −0.4 (3) S1—C1—C12—O1 174.55 (14)
C1—C2—C3—C4 −178.9 (2) C2—C1—C12—C13 −176.4 (2)
C2—C3—C4—C5 −0.2 (3) S1—C1—C12—C13 −2.1 (3)
C3—C4—C5—C6 −179.1 (2) O2—S1—C14—C19 −152.63 (17)
C3—C4—C5—C10 1.0 (3) O3—S1—C14—C19 −22.6 (2)
C10—C5—C6—C7 −0.1 (3) C1—S1—C14—C19 90.83 (18)
C4—C5—C6—C7 −180.0 (2) O2—S1—C14—C15 26.78 (19)
C5—C6—C7—C8 0.6 (4) O3—S1—C14—C15 156.85 (16)
C6—C7—C8—C9 −0.5 (4) C1—S1—C14—C15 −89.76 (18)
C7—C8—C9—C10 −0.1 (3) C19—C14—C15—C16 1.0 (3)
C8—C9—C10—C11 −178.9 (2) S1—C14—C15—C16 −178.42 (17)
C8—C9—C10—C5 0.7 (3) C14—C15—C16—C17 −0.6 (3)
C6—C5—C10—C11 179.01 (19) C15—C16—C17—F1 178.8 (2)
C4—C5—C10—C11 −1.1 (3) C15—C16—C17—C18 −0.2 (4)
C6—C5—C10—C9 −0.6 (3) F1—C17—C18—C19 −178.3 (2)
C4—C5—C10—C9 179.30 (19) C16—C17—C18—C19 0.7 (4)
C3—C2—C11—O1 −178.73 (17) C15—C14—C19—C18 −0.5 (3)
C1—C2—C11—O1 0.2 (2) S1—C14—C19—C18 178.88 (18)
C3—C2—C11—C10 0.2 (3) C17—C18—C19—C14 −0.3 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 4-fluorophenyl ring.
D—H···A D—H H···A D···A D—H···A
C8—H8···O3i 0.95 2.46 3.379 (2) 163
C15—H15···F1ii 0.95 2.53 3.150 (3) 123
C16—H16···O3iii 0.95 2.44 3.380 (2) 170
C4—H4···Cg1iv 0.95 2.75 3.625 (3) 154

Symmetry codes: (i) −x+1/2, y−1/2, z−1/2; (ii) −x+2, −y+1, z+1/2; (iii) x+1, y, z; (iv) −x+1, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5062).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o452. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o837. [DOI] [PMC free article] [PubMed]
  5. Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem 19, 405–410.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319–1324. [DOI] [PubMed]
  9. Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci.65, 128–134.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048361/sj5062sup1.cif

e-66-o3302-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048361/sj5062Isup2.hkl

e-66-o3302-Isup2.hkl (133.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES