Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3158. doi: 10.1107/S1600536810045915

3,5-Dinitro-N-(4-nitro­phen­yl)benzamide

Yuehong Ren a, Yu Zuo a, Yonggang Xiang a, Ruitao Zhu a,*
PMCID: PMC3011508  PMID: 21589455

Abstract

In the title mol­ecule, C13H8N4O7, the amide fragment has an anti configuration. The mean planes of the two benzene rings form a dihedral angle of 7.78 (4)°. The mean planes of the three nitro groups are twisted by 6.82 (3), 5.01 (4) and 18.94 (7)° with respect to the benzene rings to which they are attached. In the crystal, mol­ecules are linked by weak inter­molecular N—H⋯O hydrogen bonds into chains along [100].

Related literature

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010). For related structures, see: Raza et al. (2010); Gowda et al. (2003). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-66-o3158-scheme1.jpg

Experimental

Crystal data

  • C13H8N4O7

  • M r = 332.23

  • Monoclinic, Inline graphic

  • a = 7.8999 (9) Å

  • b = 8.019 (1) Å

  • c = 21.111 (2) Å

  • β = 94.285 (1)°

  • V = 1333.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.48 × 0.38 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.937, T max = 0.980

  • 6462 measured reflections

  • 2361 independent reflections

  • 1419 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.127

  • S = 1.01

  • 2361 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045915/lh5155sup1.cif

e-66-o3158-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045915/lh5155Isup2.hkl

e-66-o3158-Isup2.hkl (116KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.52 3.280 (3) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the University Technology Development Project in Shanxi Province (20101116).

supplementary crystallographic information

Comment

N-substituted benzamides have numerous pharmaceutical and synthetic application (Saeed et al. 2010). In this paper, we report the structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths are within normal ranges (Allen et al. 1987). The amide N—H and C═O bonds in the molecule comprising the crystallographic asymmetric unit are trans to each other and similar to those observed in 2-Hydroxy-N-(3-nitrophenyl)benzamide (Raza et al. 2010) and 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003). The mean planes of the two benzene rings form a dihedral angle of 7.78 (4)°. The mean planes of the three nitro groups are twisted by 6.82 (3)°, 5.01 (4)° and 18.94 (7)° with respect to the benzene rings to which they are attached. In the crystal structure, molecules are linked by weak intermolecular N-H···O hydrogen bonds in chains along [100] (see Fig. 2).

Experimental

3,5-Dinitrobenzoyl chloride (1.15 g, 5 mmol) dissolved in tetrahydrofuran (10 ml) was added to 4-nitroaniline (0.69 g, 5 mmol) dissolved in tetrahydrofuran (5 ml), the reaction mixture was refluxed for 2 h, then cooled to ambient temperature and filtered to remove the tetrahydrofuran. The precipitate was dissolved in methanol/tetrahydrofuran/ethyl acetate (1:1:1) and the solution was allowed to stand for a few days at ambient temperature, after which time colorless plates of the title compound suitable for X-ray diffraction were obtaind.

Refinement

H atoms were placed in idealized positions and allowed to ride on theirrespective parent atoms, with C—H = 0.93Å, N-H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C13H8N4O7 F(000) = 680
Mr = 332.23 Dx = 1.655 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1593 reflections
a = 7.8999 (9) Å θ = 2.6–26.4°
b = 8.019 (1) Å µ = 0.14 mm1
c = 21.111 (2) Å T = 298 K
β = 94.285 (1)° Plate, colorless
V = 1333.7 (3) Å3 0.48 × 0.38 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2361 independent reflections
Radiation source: fine-focus sealed tube 1419 reflections with I > 2σ(I)
graphite Rint = 0.055
φ and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.937, Tmax = 0.980 k = −9→9
6462 measured reflections l = −25→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.2955P] where P = (Fo2 + 2Fc2)/3
2361 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 1.4744 (2) 0.3431 (3) 0.43550 (9) 0.0417 (6)
H1 1.5292 0.3850 0.4056 0.050*
N2 0.8118 (3) 0.6627 (3) 0.33003 (12) 0.0470 (6)
N3 1.3396 (3) 0.6676 (4) 0.22261 (10) 0.0503 (7)
N4 1.8925 (3) 0.0058 (3) 0.61994 (11) 0.0498 (7)
O1 1.2103 (2) 0.3154 (3) 0.46823 (9) 0.0623 (7)
O2 0.7337 (2) 0.6051 (3) 0.37295 (10) 0.0605 (6)
O3 0.7509 (3) 0.7558 (3) 0.28922 (11) 0.0735 (8)
O4 1.2863 (3) 0.7866 (3) 0.19062 (10) 0.0702 (7)
O5 1.4673 (3) 0.5907 (3) 0.21316 (9) 0.0737 (8)
O6 2.0458 (3) 0.0098 (3) 0.61510 (10) 0.0680 (7)
O7 1.8282 (3) −0.0657 (4) 0.66238 (11) 0.0845 (9)
C1 1.3044 (3) 0.3678 (3) 0.43039 (12) 0.0381 (7)
C2 1.2337 (3) 0.4698 (3) 0.37448 (11) 0.0340 (6)
C3 1.0657 (3) 0.5183 (3) 0.37588 (12) 0.0376 (7)
H3 1.0034 0.4865 0.4096 0.045*
C4 0.9913 (3) 0.6136 (3) 0.32735 (12) 0.0362 (6)
C5 1.0782 (3) 0.6669 (3) 0.27726 (11) 0.0385 (7)
H5 1.0272 0.7341 0.2454 0.046*
C6 1.2440 (3) 0.6163 (3) 0.27634 (11) 0.0359 (6)
C7 1.3229 (3) 0.5177 (3) 0.32335 (11) 0.0374 (7)
H7 1.4347 0.4837 0.3207 0.045*
C8 1.5729 (3) 0.2579 (3) 0.48343 (11) 0.0343 (6)
C9 1.7451 (3) 0.2441 (4) 0.47600 (13) 0.0434 (7)
H9 1.7894 0.2898 0.4403 0.052*
C10 1.8513 (3) 0.1638 (4) 0.52054 (12) 0.0441 (7)
H10 1.9671 0.1561 0.5157 0.053*
C11 1.7825 (3) 0.0952 (3) 0.57246 (12) 0.0374 (7)
C12 1.6121 (3) 0.1071 (4) 0.58118 (12) 0.0419 (7)
H12 1.5688 0.0596 0.6168 0.050*
C13 1.5060 (3) 0.1896 (4) 0.53691 (11) 0.0413 (7)
H13 1.3908 0.1997 0.5426 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0368 (12) 0.0543 (17) 0.0345 (12) 0.0023 (11) 0.0061 (9) 0.0137 (11)
N2 0.0389 (13) 0.0526 (18) 0.0483 (15) 0.0044 (12) −0.0050 (11) −0.0092 (13)
N3 0.0473 (15) 0.071 (2) 0.0325 (14) −0.0119 (14) 0.0026 (11) −0.0005 (14)
N4 0.0538 (16) 0.0493 (18) 0.0445 (15) 0.0019 (13) −0.0091 (12) 0.0000 (12)
O1 0.0413 (11) 0.0895 (18) 0.0571 (13) 0.0032 (11) 0.0099 (10) 0.0337 (13)
O2 0.0436 (11) 0.0765 (17) 0.0632 (14) 0.0030 (11) 0.0155 (10) −0.0032 (12)
O3 0.0575 (14) 0.091 (2) 0.0701 (16) 0.0252 (13) −0.0085 (11) 0.0178 (14)
O4 0.0778 (16) 0.0818 (19) 0.0513 (14) −0.0048 (14) 0.0066 (11) 0.0273 (13)
O5 0.0576 (14) 0.112 (2) 0.0538 (14) 0.0055 (14) 0.0224 (11) 0.0070 (13)
O6 0.0534 (14) 0.0822 (19) 0.0665 (15) 0.0147 (12) −0.0085 (11) 0.0043 (12)
O7 0.0761 (16) 0.112 (2) 0.0634 (16) −0.0021 (15) −0.0101 (12) 0.0486 (15)
C1 0.0375 (15) 0.0405 (18) 0.0362 (15) −0.0014 (13) 0.0024 (12) 0.0030 (13)
C2 0.0344 (14) 0.0354 (17) 0.0318 (14) −0.0021 (12) 0.0007 (11) −0.0007 (12)
C3 0.0366 (14) 0.0404 (18) 0.0359 (15) −0.0042 (13) 0.0028 (11) −0.0008 (13)
C4 0.0303 (13) 0.0412 (18) 0.0365 (15) 0.0007 (12) −0.0025 (11) −0.0056 (13)
C5 0.0418 (15) 0.0427 (18) 0.0298 (15) −0.0015 (13) −0.0060 (11) −0.0019 (13)
C6 0.0390 (15) 0.0422 (18) 0.0267 (14) −0.0065 (13) 0.0029 (11) −0.0010 (12)
C7 0.0332 (13) 0.0425 (18) 0.0360 (15) −0.0037 (12) 0.0006 (11) −0.0061 (13)
C8 0.0388 (15) 0.0339 (17) 0.0298 (14) 0.0015 (12) 0.0004 (11) 0.0033 (12)
C9 0.0429 (16) 0.051 (2) 0.0373 (15) 0.0016 (13) 0.0080 (12) 0.0113 (13)
C10 0.0410 (15) 0.049 (2) 0.0419 (16) 0.0017 (14) 0.0003 (12) 0.0015 (14)
C11 0.0434 (15) 0.0331 (17) 0.0342 (15) 0.0018 (12) −0.0070 (12) −0.0017 (12)
C12 0.0497 (17) 0.0460 (19) 0.0300 (15) −0.0038 (14) 0.0029 (12) 0.0044 (13)
C13 0.0401 (15) 0.0472 (19) 0.0366 (15) 0.0004 (13) 0.0037 (12) 0.0018 (14)

Geometric parameters (Å, °)

N1—C1 1.354 (3) C3—H3 0.9300
N1—C8 1.407 (3) C4—C5 1.371 (3)
N1—H1 0.8600 C5—C6 1.373 (3)
N2—O3 1.212 (3) C5—H5 0.9300
N2—O2 1.224 (3) C6—C7 1.381 (3)
N2—C4 1.476 (3) C7—H7 0.9300
N3—O5 1.212 (3) C8—C9 1.385 (3)
N3—O4 1.225 (3) C8—C13 1.394 (3)
N3—C6 1.467 (3) C9—C10 1.373 (4)
N4—O7 1.207 (3) C9—H9 0.9300
N4—O6 1.224 (3) C10—C11 1.374 (3)
N4—C11 1.464 (3) C10—H10 0.9300
O1—C1 1.206 (3) C11—C12 1.376 (3)
C1—C2 1.509 (3) C12—C13 1.377 (3)
C2—C3 1.386 (3) C12—H12 0.9300
C2—C7 1.386 (3) C13—H13 0.9300
C3—C4 1.375 (4)
C1—N1—C8 128.3 (2) C6—C5—H5 121.5
C1—N1—H1 115.8 C5—C6—C7 122.6 (2)
C8—N1—H1 115.8 C5—C6—N3 118.3 (2)
O3—N2—O2 124.3 (2) C7—C6—N3 119.1 (2)
O3—N2—C4 117.9 (2) C6—C7—C2 119.4 (2)
O2—N2—C4 117.8 (2) C6—C7—H7 120.3
O5—N3—O4 124.2 (2) C2—C7—H7 120.3
O5—N3—C6 117.9 (3) C9—C8—C13 119.7 (2)
O4—N3—C6 118.0 (3) C9—C8—N1 116.9 (2)
O7—N4—O6 123.2 (2) C13—C8—N1 123.4 (2)
O7—N4—C11 118.7 (2) C10—C9—C8 121.0 (2)
O6—N4—C11 118.1 (2) C10—C9—H9 119.5
O1—C1—N1 123.6 (2) C8—C9—H9 119.5
O1—C1—C2 119.8 (2) C9—C10—C11 118.4 (2)
N1—C1—C2 116.6 (2) C9—C10—H10 120.8
C3—C2—C7 118.8 (2) C11—C10—H10 120.8
C3—C2—C1 115.8 (2) C10—C11—C12 121.9 (2)
C7—C2—C1 125.4 (2) C10—C11—N4 119.5 (2)
C4—C3—C2 119.8 (2) C12—C11—N4 118.6 (2)
C4—C3—H3 120.1 C11—C12—C13 119.6 (2)
C2—C3—H3 120.1 C11—C12—H12 120.2
C5—C4—C3 122.5 (2) C13—C12—H12 120.2
C5—C4—N2 119.0 (2) C12—C13—C8 119.3 (2)
C3—C4—N2 118.6 (2) C12—C13—H13 120.3
C4—C5—C6 116.9 (2) C8—C13—H13 120.3
C4—C5—H5 121.5
C8—N1—C1—O1 −0.7 (5) O4—N3—C6—C7 −161.6 (3)
C8—N1—C1—C2 178.0 (2) C5—C6—C7—C2 −1.4 (4)
O1—C1—C2—C3 9.6 (4) N3—C6—C7—C2 179.6 (2)
N1—C1—C2—C3 −169.1 (2) C3—C2—C7—C6 2.0 (4)
O1—C1—C2—C7 −170.7 (3) C1—C2—C7—C6 −177.7 (2)
N1—C1—C2—C7 10.6 (4) C1—N1—C8—C9 177.2 (3)
C7—C2—C3—C4 −0.6 (4) C1—N1—C8—C13 −3.2 (4)
C1—C2—C3—C4 179.1 (2) C13—C8—C9—C10 0.0 (4)
C2—C3—C4—C5 −1.4 (4) N1—C8—C9—C10 179.6 (3)
C2—C3—C4—N2 179.7 (2) C8—C9—C10—C11 0.9 (4)
O3—N2—C4—C5 −3.8 (4) C9—C10—C11—C12 −1.0 (4)
O2—N2—C4—C5 175.4 (2) C9—C10—C11—N4 178.7 (3)
O3—N2—C4—C3 175.2 (3) O7—N4—C11—C10 −173.8 (3)
O2—N2—C4—C3 −5.6 (4) O6—N4—C11—C10 7.4 (4)
C3—C4—C5—C6 1.9 (4) O7—N4—C11—C12 5.8 (4)
N2—C4—C5—C6 −179.1 (2) O6—N4—C11—C12 −173.0 (2)
C4—C5—C6—C7 −0.5 (4) C10—C11—C12—C13 0.1 (4)
C4—C5—C6—N3 178.5 (2) N4—C11—C12—C13 −179.6 (3)
O5—N3—C6—C5 −161.5 (3) C11—C12—C13—C8 0.9 (4)
O4—N3—C6—C5 19.3 (4) C9—C8—C13—C12 −0.9 (4)
O5—N3—C6—C7 17.5 (4) N1—C8—C13—C12 179.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.52 3.280 (3) 147

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5155).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  4. Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852. [DOI] [PMC free article] [PubMed]
  5. Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911–o912. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045915/lh5155sup1.cif

e-66-o3158-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045915/lh5155Isup2.hkl

e-66-o3158-Isup2.hkl (116KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES