Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 17;66(Pt 12):o3187–o3188. doi: 10.1107/S160053681004585X

2-Phenyl­biguanidinium hydrogen succinate methanol monosolvate

Irena Matulková a,b,*, Ivana Císařová c, Ivan Němec c
PMCID: PMC3011512  PMID: 21589482

Abstract

In the crystal of the title compound, C8H12N5 +·C4H5O4 ·CH3OH, the hydrogen succinate anions form infinite [010] chains via short, almost symmetrical, O⋯H⋯O hydrogen bonds. The 2-phenyl­biguanidium cations inter­connect these chains into layers lying parallel to the bc plane by way of N—H⋯O links. These planes only weakly inter­act in the direction of the a axis via C—H⋯π contacts between offset phenyl rings, leaving as much as 17% of the unit-cell volume accessible for the solvent. However, the methanol solvent mol­ecules could not be resolved due to extensive disorder and their assumed presence was removed from the overall scattering by the PLATON SQUEEZE procedure.

Related literature

Biguanides forms stable complexes, see: Marchi et al. (1999); Ray (1961); Anderson et al. (1995) and also have applications in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Shapiro et al. (1959a ,b ). Ionic crystal structures containing biguanide cations are formed by relatively strong hydrogen bonds, see: Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978); Matulková et al. (2008, 2010). For the SQUEEZE method used to solve the structure, see: van der Sluis & Spek (1990).graphic file with name e-66-o3187-scheme1.jpg

Experimental

Crystal data

  • C8H12N5 +·C4H5O4 ·CH4O

  • M r = 327.35

  • Monoclinic, Inline graphic

  • a = 10.3280 (3) Å

  • b = 6.4590 (1) Å

  • c = 24.6770 (6) Å

  • β = 94.0480 (13)°

  • V = 1642.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.4 × 0.18 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 18123 measured reflections

  • 3568 independent reflections

  • 2613 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.174

  • S = 1.07

  • 3568 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 .

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004585X/hb5725sup1.cif

e-66-o3187-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004585X/hb5725Isup2.hkl

e-66-o3187-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroidof the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.93 2.18 3.021 (2) 149
N1—H1⋯O4i 0.93 2.64 3.5217 (17) 158
N2—H2A⋯O3i 0.87 2.09 2.8855 (17) 152
N2—H2B⋯O4ii 0.92 2.14 3.0248 (19) 162
N4—H4A⋯O1iii 0.93 2.13 3.0273 (18) 161
N4—H4B⋯O2iv 0.96 1.90 2.8605 (16) 180
N5—H5B⋯O1iv 0.90 2.15 3.0440 (17) 170
O2—H2⋯O4ii 1.20 1.25 2.4500 (16) 173
C6—H6⋯Cg1v 0.93 3.10 3.676 (2) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; Inline graphic.

Acknowledgments

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).

supplementary crystallographic information

Comment

Biguanides are strong σ- and π-donating ligands, which form stable complexes (Marchi et al., 1999; Ray, 1961) with transition metal ions in high or unusual oxidation states. Biguanide complexes of boron have also been investigated as potential compounds for wood conservation (Anderson et al., 1995).

Another application of biguanides lies in the field of medicine (Sirtori & Pasik, 1994; Clement & Girreser, 1999). N-dimethylbiguanide and N-phenylethylbiguanide are used for the treatment of diabetes mellitus (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999), therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994). Biguanide and its derivatives are also produced as antimalarial drugs (Watkins et al., 1987) and drugs with hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a,b).

We have prepared and discussed N-phenylbiguanide compounds within our project of searching for new materials with nonlinear optical properties (Matulková et al., 2010; Matulková et al., 2008), where N-phenylbiguanidinium(1+) cations can act as an polarizable compound with delocalized π-electron. The molecular conformation of title compound, (I), is illustrated in Fig. 1.

The hydrogen-bonding geometries in title compound are listed in list of hydrogen bonds and illustrated in Fig. 2. A number of intra- and intermolecular hydrogen bonds stabilize the molecular conformation. The crystal structure is built up chains (along the axis b) of hydrogen succinate anions with the shared hydrogen atoms with occupancy 0.5 (hydrogen bond O2 - H2···O4 with D···A distances of 2.451 (2) Å). These chains are interconnected by 2-phenylbiguanidium cations to form a three-dimensional network. A residue electron density of disordered molecules of methanol was found on the diferential Fourier map and the crystal structure was solved by a SQUEEZE method (van der Sluis & Spek, 1990). Free cavities of maximum on the Fourier map are indicated by blue spheres and are located in the 30% of crystal structure. The cavities can be filled by spheres of two types with the radii 2.247 Å and 2.076 Å (see Fig. 3). The unit cell contains two spheres of each size.

Experimental

The crystals of the title compound, were obtained from solution of 0.2 g of N-phenylbiguanide (98%, Aldrich) and 0.14 g of succinic acid (p.a., Lachema) in 10 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in vacuum desiccator over KOH. The melting point ranges 410–412 K.

The infrared spectra were recorded at room temperature using DRIFTS and the nujol or fluorolube mull techniques on a Nicolet Magna 760 FTIR spectrometer with 2 cm-1 resolution (4 cm-1 resolution in FAR IR region) and Happ-Genzel apodization in the 85–4000 cm-1 region.

FTIR spectrum (cm-1): 3451 m; 3350 m; 3296 m; 3184 m; 2938 w; 2725 mb; 2660 mb; 2550 mb; 1712 m; 1674 m; 1640 vs; 1605 m; 1583 m; 1538 vs; 1497 s; 1455 m; 1429 m; 1419 m; 1334 w; 1310 w; 1294 w; 1256 m; 1198 m; 1176 m; 1074 w; 1054 wb; 1031 w; 957 mb; 842 w; 818 w; 804 w; 772 w; 747 m; 722 w; 698 m; 638 m; 579 m; 549 mb; 528 sh; 498 vw; 485 vw; 446 w; 414 vw; 367 wb; 261 mb; 221 w; 179 w; 143 w.

The Raman spectra of polycrystalline samples were recorded at room temperature on a Nicolet Magna 760 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm-1 resolution, Happ–Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 450 mW power at the sample) in the 100–3700 cm-1 region.

FT Raman spectrum (cm-1): 3452 vw; 3335 vwb; 3200 vw; 3079 sh; 3066 m; 2966 m; 2953 m; 2918 m; 1668 w; 1639 w; 1604 vs; 1591 m; 1563 m; 1546 m; 1499 m; 1450 w; 1437 w; 1428 w; 1418 m; 1408 m; 1379 vw; 1341 vw; 1327 vw; 1295 s; 1255 s; 1178 m; 1156 m; 1095 w; 1079 w; 1054 w; 1030 m; 1002 vs; 952 w; 937 w; 923 m; 909 vw; 844 m; 767 w; 748 w; 722 w; 681 w; 633 w; 615 m; 572 vw; 538 w; 502 w; 488 w; 414 wb; 387 w; 374 w; 340 w; 283 w; 265 m; 220 m; 188 m; 141 vs; 124 m.

Refinement

H atoms attached to C and N atoms were calculated in geometrically idealized positions, with Csp3 - H = 0.97 Å and Csp2 - H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(C). The positions of H atoms attached to O and N atoms were localized in difference Fourier maps, and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing formation of cation layers along [010].

Fig. 3.

Fig. 3.

Part of the crystal structure of (I) with blue sphere filling the cavity.

Fig. 4.

Fig. 4.

FTIR (compiled from nujol and fluorolube mulls) and FT Raman spectra of (I).

Crystal data

C8H12N5+·C4H5O4·CH4O F(000) = 696
Mr = 327.35 Dx = 1.324 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3693 reflections
a = 10.3280 (3) Å θ = 1–27.1°
b = 6.4590 (1) Å µ = 0.10 mm1
c = 24.6770 (6) Å T = 293 K
β = 94.0480 (13)° Plate, colourless
V = 1642.06 (7) Å3 0.45 × 0.4 × 0.18 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2613 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
horizontally mounted graphite crystal θmax = 27.1°, θmin = 1.7°
Detector resolution: 9.091 pixels mm-1 h = −13→13
ω and π scans to fill the Ewald sphere k = −8→8
18123 measured reflections l = −31→31
3568 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.1087P)2 + 0.1338P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3568 reflections Δρmax = 0.25 e Å3
191 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.055 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.20697 (15) −0.1226 (2) 0.77926 (5) 0.0515 (4)
H1 0.1757 −0.1468 0.7435 0.062*
N2 0.07708 (16) −0.3948 (2) 0.79668 (5) 0.0570 (4)
H2A 0.0599 −0.4106 0.7620 0.068*
H2B 0.0280 −0.4630 0.8208 0.068*
N3 0.18707 (15) −0.2116 (2) 0.86872 (5) 0.0514 (4)
N4 0.16449 (16) −0.2862 (2) 0.95713 (5) 0.0537 (4)
H4A 0.1524 −0.1453 0.9625 0.064*
H4B 0.1638 −0.3785 0.9874 0.064*
N5 0.18754 (16) −0.5585 (2) 0.90047 (5) 0.0575 (4)
H5A 0.2005 −0.6075 0.8702 0.069*
H5B 0.1909 −0.6467 0.9288 0.069*
C1 0.15804 (17) −0.2481 (2) 0.81647 (6) 0.0464 (4)
C2 0.17836 (16) −0.3547 (2) 0.90737 (6) 0.0448 (4)
O1 −0.16551 (14) −0.15632 (17) 1.00242 (4) 0.0577 (4)
O2 −0.16362 (15) −0.43722 (16) 0.95237 (5) 0.0616 (4)
H2 −0.1523 −0.4961 0.9068 0.074*
O3 −0.10001 (17) 0.1366 (2) 0.81889 (5) 0.0738 (5)
O4 −0.13315 (14) 0.42420 (17) 0.86173 (4) 0.0598 (4)
C3 0.29311 (18) 0.0463 (2) 0.78891 (6) 0.0519 (4)
C4 0.3920 (2) 0.0464 (3) 0.82884 (8) 0.0687 (6)
H4 0.4044 −0.0663 0.8521 0.082*
C5 0.4738 (3) 0.2177 (5) 0.83414 (11) 0.0929 (9)
H5 0.5407 0.2191 0.8614 0.112*
C6 0.4578 (3) 0.3832 (4) 0.80008 (14) 0.0964 (10)
H6 0.5130 0.4967 0.8042 0.116*
C7 0.3612 (3) 0.3805 (4) 0.76041 (14) 0.0911 (9)
H7 0.3508 0.4928 0.7369 0.109*
C8 0.2768 (2) 0.2135 (3) 0.75394 (9) 0.0694 (6)
H8 0.2103 0.2139 0.7265 0.083*
C9 −0.16134 (17) −0.2385 (2) 0.95785 (6) 0.0464 (4)
C10 −0.15527 (19) −0.1185 (2) 0.90552 (6) 0.0488 (4)
H10A −0.0830 −0.1701 0.8864 0.059*
H10B −0.2341 −0.1447 0.8828 0.059*
C11 −0.13977 (19) 0.1122 (2) 0.91303 (6) 0.0462 (4)
H11A −0.2155 0.1663 0.9293 0.055*
H11B −0.0647 0.1387 0.9379 0.055*
C12 −0.12325 (17) 0.2254 (2) 0.86057 (6) 0.0462 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0785 (10) 0.0498 (8) 0.0273 (6) −0.0067 (6) 0.0109 (6) 0.0028 (5)
N2 0.0825 (11) 0.0601 (9) 0.0291 (7) −0.0165 (7) 0.0088 (6) −0.0007 (6)
N3 0.0828 (10) 0.0438 (7) 0.0288 (7) −0.0077 (7) 0.0109 (6) 0.0018 (5)
N4 0.0905 (11) 0.0458 (8) 0.0258 (6) −0.0013 (7) 0.0104 (6) 0.0035 (5)
N5 0.0926 (12) 0.0439 (8) 0.0368 (7) 0.0057 (7) 0.0099 (7) 0.0031 (6)
C1 0.0672 (10) 0.0430 (8) 0.0302 (7) 0.0002 (7) 0.0121 (7) 0.0014 (6)
C2 0.0593 (10) 0.0457 (8) 0.0300 (7) −0.0025 (7) 0.0065 (6) 0.0021 (6)
O1 0.1019 (10) 0.0397 (6) 0.0324 (6) −0.0008 (6) 0.0104 (6) 0.0029 (4)
O2 0.1145 (11) 0.0315 (6) 0.0402 (6) −0.0014 (6) 0.0168 (6) 0.0058 (4)
O3 0.1439 (14) 0.0514 (7) 0.0279 (6) −0.0011 (7) 0.0179 (7) 0.0000 (5)
O4 0.1054 (10) 0.0345 (6) 0.0410 (6) −0.0023 (6) 0.0155 (6) 0.0084 (4)
C3 0.0733 (11) 0.0461 (9) 0.0391 (8) −0.0031 (8) 0.0240 (8) −0.0013 (6)
C4 0.0815 (14) 0.0792 (14) 0.0468 (10) −0.0154 (10) 0.0140 (10) 0.0015 (9)
C5 0.0854 (16) 0.119 (2) 0.0775 (16) −0.0400 (15) 0.0293 (13) −0.0254 (15)
C6 0.105 (2) 0.0770 (16) 0.114 (2) −0.0389 (14) 0.0597 (19) −0.0213 (15)
C7 0.110 (2) 0.0545 (12) 0.116 (2) −0.0070 (12) 0.0548 (19) 0.0143 (13)
C8 0.0849 (14) 0.0561 (11) 0.0711 (13) 0.0021 (9) 0.0319 (11) 0.0170 (9)
C9 0.0715 (11) 0.0329 (7) 0.0357 (8) 0.0001 (7) 0.0097 (7) 0.0041 (6)
C10 0.0817 (12) 0.0329 (8) 0.0325 (7) −0.0001 (7) 0.0086 (7) 0.0027 (5)
C11 0.0779 (11) 0.0335 (7) 0.0281 (7) −0.0031 (7) 0.0087 (7) 0.0026 (5)
C12 0.0741 (11) 0.0366 (8) 0.0281 (7) −0.0040 (7) 0.0050 (7) 0.0029 (5)

Geometric parameters (Å, °)

N1—C1 1.3495 (19) C3—C4 1.368 (3)
N1—C3 1.417 (2) C3—C8 1.385 (2)
N1—H1 0.9313 C4—C5 1.393 (3)
N2—C1 1.333 (2) C4—H4 0.9300
N2—H2A 0.8679 C5—C6 1.363 (4)
N2—H2B 0.9206 C5—H5 0.9300
N3—C1 1.3242 (19) C6—C7 1.348 (5)
N3—C2 1.3358 (19) C6—H6 0.9300
N4—C2 1.3223 (18) C7—C8 1.389 (4)
N4—H4A 0.9291 C7—H7 0.9300
N4—H4B 0.9561 C8—H8 0.9300
N5—C2 1.331 (2) C9—C10 1.511 (2)
N5—H5A 0.8301 C10—C11 1.509 (2)
N5—H5B 0.9016 C10—H10A 0.9700
O1—C9 1.2245 (18) C10—H10B 0.9700
O2—C9 1.2909 (19) C11—C12 1.5069 (19)
O2—H2 1.2016 C11—H11A 0.9700
O3—C12 1.2164 (18) C11—H11B 0.9700
O4—C12 1.2884 (19)
C1—N1—C3 127.49 (14) C4—C5—H5 119.4
C1—N1—H1 115.0 C7—C6—C5 119.3 (2)
C3—N1—H1 117.4 C7—C6—H6 120.3
C1—N2—H2A 121.6 C5—C6—H6 120.3
C1—N2—H2B 117.6 C6—C7—C8 121.3 (2)
H2A—N2—H2B 119.8 C6—C7—H7 119.4
C1—N3—C2 123.36 (14) C8—C7—H7 119.4
C2—N4—H4A 119.0 C3—C8—C7 119.1 (2)
C2—N4—H4B 121.6 C3—C8—H8 120.4
H4A—N4—H4B 119.4 C7—C8—H8 120.4
C2—N5—H5A 120.7 O1—C9—O2 121.57 (13)
C2—N5—H5B 121.7 O1—C9—C10 123.48 (13)
H5A—N5—H5B 117.2 O2—C9—C10 114.95 (13)
N3—C1—N2 125.19 (14) C11—C10—C9 114.32 (12)
N3—C1—N1 119.06 (15) C11—C10—H10A 108.7
N2—C1—N1 115.64 (14) C9—C10—H10A 108.7
N4—C2—N5 117.58 (14) C11—C10—H10B 108.7
N4—C2—N3 116.65 (14) C9—C10—H10B 108.7
N5—C2—N3 125.71 (13) H10A—C10—H10B 107.6
C9—O2—H2 114.2 C12—C11—C10 113.04 (12)
C4—C3—C8 119.99 (19) C12—C11—H11A 109.0
C4—C3—N1 123.32 (16) C10—C11—H11A 109.0
C8—C3—N1 116.63 (18) C12—C11—H11B 109.0
C3—C4—C5 119.0 (2) C10—C11—H11B 109.0
C3—C4—H4 120.5 H11A—C11—H11B 107.8
C5—C4—H4 120.5 O3—C12—O4 120.62 (13)
C6—C5—C4 121.2 (3) O3—C12—C11 122.59 (14)
C6—C5—H5 119.4 O4—C12—C11 116.78 (12)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroidof the C3–C8 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.93 2.18 3.021 (2) 149
N1—H1···O4i 0.93 2.64 3.5217 (17) 158
N2—H2A···O3i 0.87 2.09 2.8855 (17) 152
N2—H2B···O4ii 0.92 2.14 3.0248 (19) 162
N4—H4A···O1iii 0.93 2.13 3.0273 (18) 161
N4—H4B···O2iv 0.96 1.90 2.8605 (16) 180
N5—H5B···O1iv 0.90 2.15 3.0440 (17) 170
O2—H2···O4ii 1.20 1.25 2.4500 (16) 173
C6—H6···Cg1v 0.93 3.10 3.676 (2) 122

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) −x, −y, −z+2; (iv) −x, −y−1, −z+2; (v) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5725).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Anderson, K. B., Franich, R. A., Kroese, H. W. & Meder, R. (1995). Polyhedron, 14, 1149–1153.
  3. Clement, B. & Girreser, U. (1999). Magn. Reson. Chem.37, 662–666.
  4. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  5. Marchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937–1943.
  6. Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052.
  7. Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.
  8. Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct.886, 103–120.
  9. Matulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct.966, 23–32.
  10. Morain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol.46, 732–742. [PubMed]
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton. Trans. pp. 989–996.
  13. Ray, P. (1961). Chem. Rev.61, 313–359.
  14. Ross, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev.104, 1255–1282. [DOI] [PubMed]
  15. Shapiro, S. L., Parrino, V. A. & Freedman, L. (1959a). J. Am. Chem. Soc.81, 2220–2225.
  16. Shapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959b). J. Am. Chem. Soc.81, 3725–3728.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sirtori, C. R. & Pasik, C. (1994). Pharmacol. Res.30, 187–228. [DOI] [PubMed]
  19. Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev.99, 2561–2571. [DOI] [PubMed]
  22. Watkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol.39, 261–265. [DOI] [PubMed]
  23. Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem.76, 251–257. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004585X/hb5725sup1.cif

e-66-o3187-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004585X/hb5725Isup2.hkl

e-66-o3187-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES