Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):o3122. doi: 10.1107/S1600536810045083

2-(4-Fluoro­phen­yl)-3-hy­droxy-4H-chromen-4-one

Michał Wera a, Ilia E Serdiuk b, Alexander D Roshal b, Jerzy Błażejowski a,*
PMCID: PMC3011522  PMID: 21589426

Abstract

In the crystal structure of the title compound, C15H9FO3, inversely oriented mol­ecules form inversion dimers through pairs of O—H⋯O hydrogen bonds. The benzene ring is twisted at an angle of 12.0 (1)° relative to the 4H-chromene skeleton of the mol­ecule. Adjacent 4H-chromene units are parallel in a given column or oriented at an angle of 50.0 (1)° in neighboring, inversely oriented, columns, forming a herringbone pattern.

Related literature

For general background to fluorescence in flavanol (3-hy­droxy-2-phenyl-4H-chromen-4-one) and its derivatives, see: Demchenko et al. (2002); Pivovarenko et al. (2005); Roshal et al. (2003); Sengupta & Kasha (1979). For related structures, see: Cantrell & Stalzer (1982); Etter et al. (1986); Waller et al. (2003). For inter­molecular inter­actions, see: Aakeröy et al. (1992); Dorn et al. (2005). For the synthesis, see: Smith et al. (1968).graphic file with name e-66-o3122-scheme1.jpg

Experimental

Crystal data

  • C15H9FO3

  • M r = 256.22

  • Monoclinic, Inline graphic

  • a = 15.5971 (9) Å

  • b = 3.8790 (2) Å

  • c = 19.1655 (12) Å

  • β = 103.906 (6)°

  • V = 1125.55 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.6 × 0.4 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.956, T max = 0.991

  • 7973 measured reflections

  • 1999 independent reflections

  • 1729 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.113

  • S = 1.12

  • 1999 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045083/xu5076sup1.cif

e-66-o3122-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045083/xu5076Isup2.hkl

e-66-o3122-Isup2.hkl (98.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O12 0.83 (3) 2.28 (3) 2.722 (2) 113 (3)
O11—H11⋯O12i 0.83 (3) 2.02 (3) 2.761 (2) 149 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–0).

supplementary crystallographic information

Comment

3-Hydroxy-2-phenyl-4H-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquid phases originating from the Excited State Intramolecular Proton Transfer (ESIPT) phenomenon (Sengupta & Kasha, 1979). Since the fluorescence of flavonols depends strongly on the properties of the medium, the compounds can be applied as analytical probes in chemistry, biochemistry, biology and medicine (Demchenko et al., 2002). Continuing our investigations into this group of compounds (Roshal et al., 2003; Pivovarenko et al., 2005) we now present the crystal structure of a flavonol derivative – 2-(4-fluorophenyl)-3-hydroxy-4H-chromen-4-one.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-4H-chromen-4-one (flavone) moiety are typical of this group of compounds (Cantrell & Stalzer, 1982; Etter et al., 1986; Waller et al., 2003). With respective average deviations from planarity of 0.0147 (2)° and 0.0020 (2)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 12.0 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter et al., 1986)).

In the crystal structure, the inversely oriented molecules form dimers through a pair of intermolecular O—H···O (Aakeröy et al., 1992) bonds (Table 1, Fig. 2). Dimers oriented in parallel – linked by C—F···π (Dorn et al., 2005) contacts (Table 2, Fig. 2) – are arranged in columns along the b axis which are dispersively stabilized in the crystal lattice. The adjacent 4H-chromene moieties are parallel in a given column or oriented at an angle of 50.0 (1) in the two neighboring, inversely oriented, columns, which forms a herringbone pattern. The O11—H11···O12 intramolecular hydrogen bond (Table 1, Figs. 1 and 2) is the one involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

Experimental

The title compound was synthesized following the procedure described by Smith et al., 1968. Briefly, 3-(4-fluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-fluorobenzaldehyde in methanol/50% aqueous NaOH (1/1 v/v), precipitated by neutralizing the reaction mixture with aqueous HCl and separated by filtration. The product thus obtained was subjected to oxidative cyclization in alkaline methanol/H2O2 to yield 2-(4-fluorophenyl)-3-hydroxy-4H-chromen-4-one. The filtered product was purified chromatographically (Silica Gel, chloroform/methanol, 20/1 v/v) and yellow crystals suitable for X-ray investigations were grown from absolute ethanol (m.p. = 442–443 K).

Refinement

The H atoms of the C—H bonds were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms involved in O—H···O hydrogen bonds were located on a difference map and refined freely with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O—H···O hydrogen bond is indicated by a dashed line.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure. The O—H···O hydrogen bonds are represented by dashed lines, the C—F···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 2, –z + 1; (ii) x, y – 1, z.]

Fig. 3.

Fig. 3.

Columns in the crystal structure, viewed along the b axis. The O—H···O interactions are represented by dashed lines, the C—F···π contacts by dotted lines. H atoms not involved in interactions have been omitted.

Crystal data

C15H9FO3 F(000) = 528
Mr = 256.22 Dx = 1.512 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1729 reflections
a = 15.5971 (9) Å θ = 3.9–25.1°
b = 3.8790 (2) Å µ = 0.12 mm1
c = 19.1655 (12) Å T = 295 K
β = 103.906 (6)° Plate, yellow
V = 1125.55 (11) Å3 0.6 × 0.4 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 1999 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1729 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 10.4002 pixels mm-1 θmax = 25.1°, θmin = 3.9°
ω scans h = −18→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −4→4
Tmin = 0.956, Tmax = 0.991 l = −20→22
7973 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.833P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
1999 reflections Δρmax = 0.21 e Å3
176 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.78326 (8) 0.9690 (4) 0.42669 (7) 0.0375 (4)
C2 0.75381 (12) 0.8861 (5) 0.48666 (10) 0.0305 (5)
C3 0.66843 (13) 0.9437 (6) 0.48778 (10) 0.0340 (5)
C4 0.60607 (13) 1.0994 (6) 0.42768 (11) 0.0350 (5)
C5 0.58939 (13) 1.3469 (6) 0.30419 (11) 0.0376 (5)
H5 0.5310 1.4047 0.3022 0.045*
C6 0.62406 (14) 1.4144 (6) 0.24658 (12) 0.0421 (6)
H6 0.5891 1.5134 0.2052 0.051*
C7 0.71196 (15) 1.3346 (7) 0.25000 (12) 0.0442 (6)
H7 0.7354 1.3816 0.2108 0.053*
C8 0.76441 (14) 1.1878 (7) 0.31031 (11) 0.0423 (6)
H8 0.8232 1.1364 0.3124 0.051*
C9 0.64095 (12) 1.1912 (5) 0.36633 (10) 0.0306 (5)
C10 0.72829 (12) 1.1169 (6) 0.36824 (10) 0.0320 (5)
O11 0.63946 (10) 0.8624 (5) 0.54678 (8) 0.0542 (5)
H11 0.585 (2) 0.891 (9) 0.5380 (16) 0.081*
O12 0.52826 (9) 1.1478 (5) 0.42954 (9) 0.0554 (5)
C13 0.82586 (12) 0.7435 (5) 0.54311 (10) 0.0306 (5)
C14 0.91251 (13) 0.7678 (6) 0.53545 (11) 0.0389 (5)
H14 0.9230 0.8692 0.4943 0.047*
C15 0.98280 (14) 0.6447 (6) 0.58754 (11) 0.0420 (6)
H15 1.0402 0.6623 0.5818 0.050*
C16 0.96660 (13) 0.4969 (6) 0.64746 (11) 0.0369 (5)
C17 0.88298 (14) 0.4651 (6) 0.65736 (11) 0.0406 (6)
H17 0.8736 0.3620 0.6987 0.049*
C18 0.81276 (13) 0.5880 (6) 0.60519 (11) 0.0366 (5)
H18 0.7557 0.5667 0.6116 0.044*
F19 1.03595 (8) 0.3745 (4) 0.69849 (7) 0.0561 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0255 (7) 0.0598 (10) 0.0287 (7) 0.0049 (7) 0.0097 (6) 0.0056 (7)
C2 0.0284 (10) 0.0368 (12) 0.0278 (10) −0.0038 (9) 0.0098 (8) −0.0027 (9)
C3 0.0294 (10) 0.0435 (12) 0.0310 (10) −0.0026 (10) 0.0109 (8) −0.0009 (10)
C4 0.0262 (10) 0.0423 (12) 0.0375 (11) −0.0016 (9) 0.0095 (9) −0.0022 (10)
C5 0.0281 (10) 0.0424 (13) 0.0409 (12) 0.0012 (9) 0.0053 (9) 0.0008 (10)
C6 0.0402 (12) 0.0492 (14) 0.0346 (11) 0.0048 (11) 0.0043 (9) 0.0049 (11)
C7 0.0427 (12) 0.0580 (15) 0.0343 (11) 0.0027 (11) 0.0140 (10) 0.0054 (11)
C8 0.0314 (11) 0.0615 (16) 0.0363 (11) 0.0035 (11) 0.0129 (9) 0.0020 (11)
C9 0.0265 (10) 0.0340 (11) 0.0314 (10) −0.0030 (9) 0.0068 (8) −0.0043 (9)
C10 0.0263 (10) 0.0402 (12) 0.0284 (10) −0.0014 (9) 0.0045 (8) −0.0028 (9)
O11 0.0303 (8) 0.0941 (15) 0.0432 (9) 0.0096 (9) 0.0185 (7) 0.0201 (9)
O12 0.0274 (8) 0.0902 (14) 0.0523 (10) 0.0100 (9) 0.0169 (7) 0.0174 (10)
C13 0.0280 (10) 0.0351 (11) 0.0292 (10) −0.0022 (9) 0.0081 (8) −0.0043 (9)
C14 0.0331 (11) 0.0515 (14) 0.0342 (11) −0.0001 (10) 0.0122 (9) 0.0077 (10)
C15 0.0267 (10) 0.0566 (15) 0.0429 (12) −0.0002 (10) 0.0090 (9) 0.0054 (11)
C16 0.0327 (11) 0.0424 (13) 0.0320 (11) 0.0020 (10) 0.0010 (9) 0.0002 (10)
C17 0.0392 (12) 0.0537 (15) 0.0302 (11) −0.0035 (11) 0.0109 (9) 0.0040 (10)
C18 0.0287 (10) 0.0497 (13) 0.0328 (11) −0.0027 (10) 0.0100 (8) 0.0006 (10)
F19 0.0386 (7) 0.0798 (11) 0.0443 (8) 0.0069 (7) −0.0013 (6) 0.0139 (7)

Geometric parameters (Å, °)

O1—C10 1.363 (2) C8—C10 1.388 (3)
O1—C2 1.374 (2) C8—H8 0.9300
C2—C3 1.355 (3) C9—C10 1.384 (3)
C2—C13 1.468 (3) O11—H11 0.83 (3)
C3—O11 1.352 (2) C13—C18 1.392 (3)
C3—C4 1.449 (3) C13—C14 1.397 (3)
C4—O12 1.237 (2) C14—C15 1.379 (3)
C4—C9 1.454 (3) C14—H14 0.9300
C5—C6 1.367 (3) C15—C16 1.360 (3)
C5—C9 1.403 (3) C15—H15 0.9300
C5—H5 0.9300 C16—F19 1.358 (2)
C6—C7 1.392 (3) C16—C17 1.368 (3)
C6—H6 0.9300 C17—C18 1.378 (3)
C7—C8 1.369 (3) C17—H17 0.9300
C7—H7 0.9300 C18—H18 0.9300
C10—O1—C2 121.01 (15) C5—C9—C4 122.85 (18)
C3—C2—O1 120.12 (18) O1—C10—C9 122.00 (17)
C3—C2—C13 129.15 (18) O1—C10—C8 116.41 (17)
O1—C2—C13 110.73 (16) C9—C10—C8 121.58 (19)
O11—C3—C2 120.13 (19) C3—O11—H11 109 (2)
O11—C3—C4 117.82 (17) C18—C13—C14 117.60 (18)
C2—C3—C4 122.04 (18) C18—C13—C2 123.34 (17)
O12—C4—C3 121.08 (19) C14—C13—C2 119.05 (18)
O12—C4—C9 123.13 (19) C15—C14—C13 121.43 (19)
C3—C4—C9 115.79 (17) C15—C14—H14 119.3
C6—C5—C9 120.73 (19) C13—C14—H14 119.3
C6—C5—H5 119.6 C16—C15—C14 118.73 (19)
C9—C5—H5 119.6 C16—C15—H15 120.6
C5—C6—C7 119.7 (2) C14—C15—H15 120.6
C5—C6—H6 120.1 F19—C16—C15 118.55 (19)
C7—C6—H6 120.1 F19—C16—C17 119.32 (19)
C8—C7—C6 120.9 (2) C15—C16—C17 122.1 (2)
C8—C7—H7 119.5 C16—C17—C18 119.08 (19)
C6—C7—H7 119.5 C16—C17—H17 120.5
C7—C8—C10 118.86 (19) C18—C17—H17 120.5
C7—C8—H8 120.6 C17—C18—C13 121.04 (18)
C10—C8—H8 120.6 C17—C18—H18 119.5
C10—C9—C5 118.14 (18) C13—C18—H18 119.5
C10—C9—C4 119.01 (18)
C10—O1—C2—C3 1.5 (3) C5—C9—C10—O1 179.34 (19)
C10—O1—C2—C13 −177.75 (18) C4—C9—C10—O1 −1.9 (3)
O1—C2—C3—O11 −179.95 (19) C5—C9—C10—C8 −1.0 (3)
C13—C2—C3—O11 −0.8 (4) C4—C9—C10—C8 177.8 (2)
O1—C2—C3—C4 −1.4 (3) C7—C8—C10—O1 179.6 (2)
C13—C2—C3—C4 177.7 (2) C7—C8—C10—C9 0.0 (4)
O11—C3—C4—O12 −1.9 (3) C3—C2—C13—C18 11.1 (4)
C2—C3—C4—O12 179.5 (2) O1—C2—C13—C18 −169.68 (19)
O11—C3—C4—C9 178.3 (2) C3—C2—C13—C14 −167.8 (2)
C2—C3—C4—C9 −0.3 (3) O1—C2—C13—C14 11.4 (3)
C9—C5—C6—C7 −1.3 (4) C18—C13—C14—C15 −0.4 (3)
C5—C6—C7—C8 0.2 (4) C2—C13—C14—C15 178.6 (2)
C6—C7—C8—C10 0.4 (4) C13—C14—C15—C16 0.0 (4)
C6—C5—C9—C10 1.7 (3) C14—C15—C16—F19 179.7 (2)
C6—C5—C9—C4 −177.0 (2) C14—C15—C16—C17 0.4 (4)
O12—C4—C9—C10 −177.9 (2) F19—C16—C17—C18 −179.6 (2)
C3—C4—C9—C10 1.9 (3) C15—C16—C17—C18 −0.3 (4)
O12—C4—C9—C5 0.8 (4) C16—C17—C18—C13 −0.1 (4)
C3—C4—C9—C5 −179.4 (2) C14—C13—C18—C17 0.5 (3)
C2—O1—C10—C9 0.2 (3) C2—C13—C18—C17 −178.5 (2)
C2—O1—C10—C8 −179.50 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O11—H11···O12 0.83 (3) 2.28 (3) 2.722 (2) 113 (3)
O11—H11···O12i 0.83 (3) 2.02 (3) 2.761 (2) 149 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Table 2 C—F···π interactions (Å, °).

Cg1 is the centroid of the C13–C18 ring.

X I J I···J X···J X—I···J
C16 F19 Cg1ii 3.888 (2) 3.642 (2) 69.5 (2)

Symmetry code: (ii) x, y – 1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5076).

References

  1. Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem.3, 63–65.
  2. Cantrell, J. S. & Stalzer, R. A. (1982). Acta Cryst. B38, 983–984.
  3. Demchenko, A. P., Klymchenko, A. S., Pivovarenko, V. G. & Ercelen, S. (2002). Fluorescence Spectroscopy, Imaging and Probes – New Tools in Chemical, Physical and Life Sciences, edited by R. Kraayenhof, A. J. W. G. Viser & H. C. Gerritsen, Vol. 2 (Springer Series on Fluorescence), pp. 101–110. Berlin, Heidelberg: Springer-Verlag.
  4. Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  5. Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct.144, 155–167.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74–78.
  9. Roshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem.68, 5860–5869. [DOI] [PubMed]
  10. Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett.68, 382–385.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Smith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem.5, 425–426.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045083/xu5076sup1.cif

e-66-o3122-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045083/xu5076Isup2.hkl

e-66-o3122-Isup2.hkl (98.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES