Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3129–o3130. doi: 10.1107/S1600536810045010

3-Acetyl-4-hy­droxy-6,7-dimethyl-2H-chromen-2-one

Mohammad Asad a, Chuan-Wei Oo a,, Hasnah Osman a, Jia Hao Goh b,§, Hoong-Kun Fun b,*,
PMCID: PMC3011552  PMID: 21589432

Abstract

In the title coumarin derivative, C13H12O4, the 2H-chromene ring system is essentially planar [maximum deviation = 0.047 (1) Å]. An intra­molecular hydrogen bond is observed between the hy­droxy and the ketonic O atoms. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers. Additional inter­molecular C—H⋯O hydrogen bonds further inter­connect these dimers into two-dimensional arrays incorporating R 2 2(9) ring motifs.

Related literature

For general background to and applications of coumarin derivatives, see: Eisenhauer & Link (1953); Franz et al. (1981); Frontiera et al. (2009); Maurer & Arlt (1998). Tamura et al. (1982); Wang et al. (2007). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For a related coumaric structure, see: Mechi et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o3129-scheme1.jpg

Experimental

Crystal data

  • C13H12O4

  • M r = 232.23

  • Monoclinic, Inline graphic

  • a = 3.9491 (4) Å

  • b = 12.1359 (11) Å

  • c = 22.101 (2) Å

  • β = 90.563 (1)°

  • V = 1059.16 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.32 × 0.19 × 0.13 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.966, T max = 0.986

  • 13172 measured reflections

  • 3139 independent reflections

  • 2539 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.148

  • S = 1.05

  • 3139 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045010/rz2512sup1.cif

e-66-o3129-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045010/rz2512Isup2.hkl

e-66-o3129-Isup2.hkl (154KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O3 1.277 (18) 1.183 (18) 2.4299 (14) 162.0 (16)
C6—H6A⋯O3i 0.93 2.58 3.4603 (17) 159
C11—H11B⋯O2ii 0.96 2.59 3.5458 (18) 172
C12—H12A⋯O4iii 0.96 2.53 3.4751 (17) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are thankful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. JHG and HKF also thank USM for the Research University Grant (No. 1001/PFIZIK/811160) and MA also thanks USM for the award of a post doctoral fellowship.

supplementary crystallographic information

Comment

We report here a new 4-hydroxycoumarin derivative, which has been synthesized by acetylation process (Eisenhauer & Link, 1953). Recently, coumarin and its derivatives have been extensively used in industrial products as dyes/laser materials (Wang et al., 2007), photosensitizers (Frontiera et al., 2009), pesticides (Franz et al., 1981), in pharmacology (Maurer & Arlt, 1998) and in enzymology as biological probes (Tamura et al., 1982).

In the title coumarin compound, (Fig. 1), the 2H-chromene ring system (C1-C9/O1) is essentially planar, as indicated by the maximum deviation of -0.047 (1) Å at atom C1. Bond length of C10═O3 [1.2590 (16) Å] is longer than normal value due to the delocalization of atom H1O2 between the hydroxyl oxygen atom (O2) and the ketonic oxygen atom (O3), as observed in a related structure (Mechi et al., 2009). However, the bond lengths of O2—H1O2 = 1.277 (18) and O3—H1O2 = 1.183 (18) Å are inconsistent with the respective values observed in Mechi et al., 2009. All other bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, (Fig. 2), pairs of intermolecular C12—H12A···O4 hydrogen bonds (Table 1) link inversion-related molecules into dimers, producing R22(16) ring motifs (Bernstein et al., 1995). Intermolecular C6—H16A···O3 and C11—H11B···O2 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional arrays incorporating R22(9) hydrogen bond ring motifs (Bernstein et al., 1995).

Experimental

Acetyl chloride (1 ml) was added to a solution of 4-hydroxy-6,7-dimethylcoumarin (5.2 mmol, 1.0 g) in pyridine (10 ml) which contains piperidine (one drop) on ice bath. The reaction mixture was kept at room temperature for 7 days. The solution was then poured into ice-cold water and hydrochloric acid was added to afford the precipitate, which was washed with water, dried and recrystallized from ethanol to get the pure title compound in 70% yield.

Refinement

Atom H1O2 was located in a difference Fourier map and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title coumarin compound, showing 50 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal structure of the title coumarin compound, viewed along an arbitrary axis, showing dimers being linked into a two-dimensional array. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C13H12O4 F(000) = 488
Mr = 232.23 Dx = 1.456 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5636 reflections
a = 3.9491 (4) Å θ = 3.2–30.2°
b = 12.1359 (11) Å µ = 0.11 mm1
c = 22.101 (2) Å T = 100 K
β = 90.563 (1)° Block, brown
V = 1059.16 (17) Å3 0.32 × 0.19 × 0.13 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3139 independent reflections
Radiation source: fine-focus sealed tube 2539 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 30.2°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −5→5
Tmin = 0.966, Tmax = 0.986 k = −17→17
13172 measured reflections l = −29→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.5033P] where P = (Fo2 + 2Fc2)/3
3139 reflections (Δ/σ)max < 0.001
161 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2856 (2) 0.47223 (7) 0.06747 (4) 0.0226 (2)
O2 0.8349 (3) 0.53534 (8) 0.22188 (4) 0.0257 (2)
O3 0.8887 (3) 0.33852 (8) 0.23973 (5) 0.0279 (2)
O4 0.2728 (3) 0.29458 (8) 0.08591 (5) 0.0282 (2)
C1 0.3765 (3) 0.38338 (10) 0.10303 (6) 0.0207 (2)
C2 0.3684 (3) 0.57902 (10) 0.08348 (6) 0.0194 (2)
C3 0.2653 (3) 0.66119 (10) 0.04395 (6) 0.0203 (2)
H3A 0.1509 0.6432 0.0083 0.024*
C4 0.3335 (3) 0.77060 (10) 0.05780 (6) 0.0193 (2)
C5 0.5009 (3) 0.79852 (10) 0.11250 (6) 0.0198 (2)
C6 0.6079 (3) 0.71492 (10) 0.15068 (6) 0.0203 (2)
H6A 0.7232 0.7324 0.1863 0.024*
C7 0.5447 (3) 0.60395 (10) 0.13639 (6) 0.0192 (2)
C8 0.6577 (3) 0.51334 (10) 0.17322 (5) 0.0193 (2)
C9 0.5807 (3) 0.40436 (10) 0.15620 (5) 0.0184 (2)
C10 0.7117 (3) 0.31530 (11) 0.19379 (6) 0.0218 (3)
C11 0.6506 (4) 0.19714 (11) 0.18029 (7) 0.0259 (3)
H11B 0.7690 0.1525 0.2094 0.039*
H11C 0.7309 0.1805 0.1405 0.039*
H11D 0.4124 0.1820 0.1822 0.039*
C12 0.2309 (3) 0.85786 (11) 0.01304 (6) 0.0249 (3)
H12A 0.0781 0.8268 −0.0164 0.037*
H12B 0.4284 0.8854 −0.0069 0.037*
H12C 0.1207 0.9171 0.0338 0.037*
C13 0.5604 (4) 0.91704 (11) 0.12989 (7) 0.0264 (3)
H13A 0.6985 0.9200 0.1658 0.040*
H13B 0.3471 0.9522 0.1373 0.040*
H13C 0.6735 0.9544 0.0976 0.040*
H1O2 0.886 (4) 0.4360 (15) 0.2387 (8) 0.029 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0297 (5) 0.0181 (4) 0.0201 (4) −0.0013 (3) −0.0067 (3) 0.0018 (3)
O2 0.0335 (5) 0.0222 (5) 0.0210 (5) −0.0004 (4) −0.0084 (4) −0.0013 (4)
O3 0.0345 (5) 0.0247 (5) 0.0244 (5) 0.0003 (4) −0.0086 (4) 0.0041 (4)
O4 0.0363 (5) 0.0201 (5) 0.0282 (5) −0.0049 (4) −0.0071 (4) −0.0018 (4)
C1 0.0241 (5) 0.0180 (5) 0.0201 (6) −0.0002 (4) −0.0010 (4) 0.0013 (4)
C2 0.0222 (5) 0.0157 (5) 0.0203 (6) 0.0000 (4) 0.0006 (4) 0.0000 (4)
C3 0.0235 (5) 0.0182 (5) 0.0191 (6) −0.0003 (4) −0.0017 (4) 0.0001 (4)
C4 0.0213 (5) 0.0169 (5) 0.0198 (6) 0.0010 (4) −0.0008 (4) 0.0015 (4)
C5 0.0222 (5) 0.0173 (5) 0.0197 (6) 0.0000 (4) −0.0006 (4) 0.0000 (4)
C6 0.0225 (5) 0.0202 (5) 0.0182 (6) −0.0002 (4) −0.0020 (4) 0.0002 (4)
C7 0.0214 (5) 0.0182 (5) 0.0179 (6) 0.0014 (4) 0.0000 (4) 0.0019 (4)
C8 0.0214 (5) 0.0201 (5) 0.0163 (5) −0.0002 (4) −0.0016 (4) −0.0002 (4)
C9 0.0211 (5) 0.0163 (5) 0.0177 (5) 0.0004 (4) −0.0007 (4) 0.0013 (4)
C10 0.0229 (5) 0.0214 (6) 0.0212 (6) 0.0006 (4) 0.0000 (4) 0.0029 (4)
C11 0.0293 (6) 0.0178 (6) 0.0304 (7) 0.0002 (4) −0.0035 (5) 0.0051 (5)
C12 0.0304 (6) 0.0196 (6) 0.0245 (6) 0.0015 (5) −0.0060 (5) 0.0039 (5)
C13 0.0331 (6) 0.0182 (6) 0.0279 (7) −0.0021 (5) −0.0050 (5) −0.0015 (5)

Geometric parameters (Å, °)

O1—C1 1.3797 (15) C6—C7 1.4050 (17)
O1—C2 1.3819 (15) C6—H6A 0.9300
O2—C8 1.3048 (15) C7—C8 1.4366 (17)
O2—H1O2 1.277 (18) C8—C9 1.4074 (17)
O3—C10 1.2590 (16) C9—C10 1.4550 (17)
O3—H1O2 1.183 (18) C10—C11 1.4840 (18)
O4—C1 1.2121 (15) C11—H11B 0.9600
C1—C9 1.4415 (17) C11—H11C 0.9600
C2—C3 1.3843 (17) C11—H11D 0.9600
C2—C7 1.3884 (17) C12—H12A 0.9600
C3—C4 1.3884 (17) C12—H12B 0.9600
C3—H3A 0.9300 C12—H12C 0.9600
C4—C5 1.4133 (17) C13—H13A 0.9600
C4—C12 1.5022 (17) C13—H13B 0.9600
C5—C6 1.3831 (17) C13—H13C 0.9600
C5—C13 1.5066 (17)
C1—O1—C2 121.83 (10) C9—C8—C7 120.19 (11)
C8—O2—H1O2 97.4 (8) C8—C9—C1 120.10 (11)
C10—O3—H1O2 101.7 (9) C8—C9—C10 118.09 (11)
O4—C1—O1 115.58 (11) C1—C9—C10 121.82 (11)
O4—C1—C9 126.59 (12) O3—C10—C9 119.06 (12)
O1—C1—C9 117.83 (10) O3—C10—C11 117.79 (11)
O1—C2—C3 116.52 (11) C9—C10—C11 123.15 (11)
O1—C2—C7 122.39 (11) C10—C11—H11B 109.5
C3—C2—C7 121.09 (11) C10—C11—H11C 109.5
C2—C3—C4 119.64 (11) H11B—C11—H11C 109.5
C2—C3—H3A 120.2 C10—C11—H11D 109.5
C4—C3—H3A 120.2 H11B—C11—H11D 109.5
C3—C4—C5 120.40 (11) H11C—C11—H11D 109.5
C3—C4—C12 118.59 (11) C4—C12—H12A 109.5
C5—C4—C12 121.00 (11) C4—C12—H12B 109.5
C6—C5—C4 118.91 (11) H12A—C12—H12B 109.5
C6—C5—C13 119.92 (11) C4—C12—H12C 109.5
C4—C5—C13 121.17 (11) H12A—C12—H12C 109.5
C5—C6—C7 120.90 (11) H12B—C12—H12C 109.5
C5—C6—H6A 119.6 C5—C13—H13A 109.5
C7—C6—H6A 119.6 C5—C13—H13B 109.5
C2—C7—C6 118.99 (11) H13A—C13—H13B 109.5
C2—C7—C8 117.43 (11) C5—C13—H13C 109.5
C6—C7—C8 123.57 (11) H13A—C13—H13C 109.5
O2—C8—C9 121.68 (11) H13B—C13—H13C 109.5
O2—C8—C7 118.12 (11)
C2—O1—C1—O4 176.00 (11) C5—C6—C7—C2 −0.86 (19)
C2—O1—C1—C9 −3.75 (17) C5—C6—C7—C8 178.13 (11)
C1—O1—C2—C3 179.59 (11) C2—C7—C8—O2 177.43 (11)
C1—O1—C2—C7 −0.62 (18) C6—C7—C8—O2 −1.57 (19)
O1—C2—C3—C4 178.64 (11) C2—C7—C8—C9 −1.77 (18)
C7—C2—C3—C4 −1.15 (19) C6—C7—C8—C9 179.23 (11)
C2—C3—C4—C5 −1.35 (18) O2—C8—C9—C1 178.30 (11)
C2—C3—C4—C12 177.66 (11) C7—C8—C9—C1 −2.53 (18)
C3—C4—C5—C6 2.68 (18) O2—C8—C9—C10 −1.45 (18)
C12—C4—C5—C6 −176.30 (11) C7—C8—C9—C10 177.72 (11)
C3—C4—C5—C13 −176.65 (12) O4—C1—C9—C8 −174.46 (13)
C12—C4—C5—C13 4.36 (19) O1—C1—C9—C8 5.26 (17)
C4—C5—C6—C7 −1.57 (19) O4—C1—C9—C10 5.3 (2)
C13—C5—C6—C7 177.78 (11) O1—C1—C9—C10 −175.00 (11)
O1—C2—C7—C6 −177.53 (11) C8—C9—C10—O3 −0.23 (18)
C3—C2—C7—C6 2.25 (19) C1—C9—C10—O3 −179.98 (12)
O1—C2—C7—C8 3.42 (18) C8—C9—C10—C11 −179.43 (12)
C3—C2—C7—C8 −176.80 (11) C1—C9—C10—C11 0.82 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···O3 1.277 (18) 1.183 (18) 2.4299 (14) 162.0 (16)
C6—H6A···O3i 0.93 2.58 3.4603 (17) 159
C11—H11B···O2ii 0.96 2.59 3.5458 (18) 172
C12—H12A···O4iii 0.96 2.53 3.4751 (17) 168

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2512).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Eisenhauer, H. R. & Link, K. P. (1953). J. Am. Chem. Soc.75, 2044–2045.
  6. Franz, E., Klauke, E. & Hamann, I. (1981). Ger. Offen. 3012642.
  7. Frontiera, R. R., Dasgupta, J. & Mathies, R. A. (2009). J. Am. Chem. Soc.131, 15630–15632. [DOI] [PubMed]
  8. Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B, 714, 181–195. [DOI] [PubMed]
  9. Mechi, L., Chtiba, S., Hamdi, N. & Ben Hassen, R. (2009). Acta Cryst. E65, o1652–o1653. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tamura, Y., Fujita, M., Chen, L. C., Ueno, K. & Kita, Y. (1982). J. Heterocycl. Chem.19, 289–296.
  13. Wang, T., Zhao, Y., Shi, M. & Wu, F. (2007). Dyes Pigm.75, 104–110.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045010/rz2512sup1.cif

e-66-o3129-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045010/rz2512Isup2.hkl

e-66-o3129-Isup2.hkl (154KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES