Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 17;66(Pt 12):m1576. doi: 10.1107/S1600536810046398

Poly[diaqua­bis­[μ-1-hy­droxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldiphospho­nato]tricopper(II)]

Yaping Li a, Dajun Sun b,*, Hu Zang c, Liying Han d, Guanfang Su a
PMCID: PMC3011556  PMID: 21589262

Abstract

In the title coordination polymer, [Cu3(C5H7N2O7P2)2(H2O)2]n, one CuII atom is five-coordinated by five O atoms from three 1-hy­droxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldiphospho­nate (L) ligands in a distorted square-pyramidal geometry. The other CuII atom, lying on an inversion center, is six-coordinated in a distorted octa­hedral geometry by four O atoms from two L ligands and two O atoms from two water mol­ecules. The five-coordinated CuII atoms are linked by phospho­nate O atoms of the L ligands, forming a polymeric chain. These chains are further linked by the six-coordinated Cu atoms into a layer parallel to (Inline graphic01). N—H⋯O and O—H⋯O hydrogen bonds connect the layers into a three-dimensional supra­molecular structure.

Related literature

For general background to the applications of metal phospho­nates, see: Katz et al. (1994).graphic file with name e-66-m1576-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C5H7N2O7P2)2(H2O)2]

  • M r = 764.81

  • Triclinic, Inline graphic

  • a = 7.4167 (9) Å

  • b = 8.1502 (10) Å

  • c = 9.5228 (12) Å

  • α = 104.747 (2)°

  • β = 107.658 (2)°

  • γ = 101.484 (2)°

  • V = 506.03 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.21 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.58, T max = 0.75

  • 2771 measured reflections

  • 1973 independent reflections

  • 1729 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.073

  • S = 1.05

  • 1973 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046398/hy2377sup1.cif

e-66-m1576-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046398/hy2377Isup2.hkl

e-66-m1576-Isup2.hkl (95KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6i 0.86 1.94 2.771 (4) 163
O7—H7⋯O4 0.82 2.16 2.724 (3) 126
O1W—H1A⋯O3ii 0.88 (5) 2.09 (3) 2.921 (4) 157 (5)
O1W—H1B⋯O2iii 0.87 (2) 2.13 (4) 2.851 (4) 140 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank The China–Japan Union Hospital of Jilin University for supporting this work.

supplementary crystallographic information

Comment

During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.

The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.

Experimental

The synthesis was performed under hydrothermal conditions. A mixture of CuCl2.2H2O (0.034 g, 0.2 mmol), L ligand (0.070 g, 0.2 mmol) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 423 K in 2 h and maintained at 423 K for 72 h. After the mixture was cooled to 298 K, green crystals of the title compound were obtained (yield: 56%).

Refinement

H atoms bound to C, N and hydroxy O were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97, N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxy)Ueq(C,N,O). H atoms of water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y - 1, -z; (ii) x - 1, y - 1, z - 1; (iii) -x, -y - 2, -z; (iv) x + 1, y + 1, z + 1; (v) -x + 1, -y, -z + 1; (vi) x, y + 1, z; (vii) -x - 1, -y - 2, -z - 1.]

Fig. 2.

Fig. 2.

Two-dimensional layer structure in the title compound.

Crystal data

[Cu3(C5H7N2O7P2)2(H2O)2] Z = 1
Mr = 764.81 F(000) = 381
Triclinic, P1 Dx = 2.510 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4167 (9) Å Cell parameters from 1973 reflections
b = 8.1502 (10) Å θ = 1.9–28.3°
c = 9.5228 (12) Å µ = 3.54 mm1
α = 104.747 (2)° T = 293 K
β = 107.658 (2)° Block, blue
γ = 101.484 (2)° 0.30 × 0.28 × 0.21 mm
V = 506.03 (11) Å3

Data collection

Bruker APEX CCD diffractometer 1973 independent reflections
Radiation source: fine-focus sealed tube 1729 reflections with I > 2σ(I)
graphite Rint = 0.012
φ and ω scans θmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.58, Tmax = 0.75 k = −10→6
2771 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2 + 0.8352P] where P = (Fo2 + 2Fc2)/3
1973 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 0.55 e Å3
2 restraints Δρmin = −0.68 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2068 (5) −0.5648 (4) −0.4517 (4) 0.0140 (7)
H1 0.1047 −0.6119 −0.5497 0.017*
C2 0.3998 (5) −0.5281 (5) −0.2131 (4) 0.0173 (7)
H2 0.4524 −0.5475 −0.1190 0.021*
C3 0.4782 (5) −0.3932 (5) −0.2542 (4) 0.0186 (7)
H3 0.5935 −0.2995 −0.1928 0.022*
C4 0.0950 (5) −0.7988 (4) −0.3483 (4) 0.0122 (7)
H4A 0.1673 −0.8856 −0.3460 0.015*
H4B −0.0147 −0.8435 −0.4487 0.015*
C5 0.0110 (5) −0.7833 (4) −0.2191 (4) 0.0090 (6)
N1 0.2266 (4) −0.6324 (4) −0.3368 (3) 0.0110 (6)
N2 0.3567 (4) −0.4195 (4) −0.4031 (3) 0.0159 (6)
H2A 0.3750 −0.3518 −0.4568 0.019*
O1 −0.2890 (3) −1.0888 (3) −0.3981 (2) 0.0104 (5)
O2 −0.2018 (3) −0.9799 (3) −0.1041 (2) 0.0098 (5)
O3 0.0217 (3) −1.1193 (3) −0.2195 (2) 0.0099 (5)
O4 0.2060 (3) −0.3636 (3) 0.0771 (2) 0.0100 (5)
O5 0.0648 (3) −0.5288 (3) 0.2312 (2) 0.0105 (5)
O6 0.3438 (3) −0.2484 (3) 0.3787 (3) 0.0115 (5)
O7 0.1644 (3) −0.7118 (3) −0.0644 (2) 0.0105 (5)
H7 0.2315 −0.6121 −0.0511 0.016*
P1 −0.12407 (12) −1.01022 (10) −0.23716 (9) 0.00780 (18)
P2 0.16460 (12) −0.34839 (10) 0.22756 (9) 0.00806 (18)
Cu1 −0.07744 (6) −0.75596 (5) 0.06756 (4) 0.00871 (12)
Cu2 0.5000 0.0000 0.5000 0.01057 (15)
O1W 0.3909 (4) −0.0271 (4) 0.7275 (3) 0.0282 (6)
H1A 0.302 (6) −0.054 (7) 0.768 (5) 0.042*
H1B 0.491 (5) −0.001 (6) 0.815 (4) 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0184 (18) 0.0150 (17) 0.0093 (15) 0.0056 (14) 0.0050 (13) 0.0048 (13)
C2 0.0147 (17) 0.0198 (18) 0.0129 (16) 0.0011 (14) 0.0017 (14) 0.0058 (14)
C3 0.0171 (18) 0.0175 (18) 0.0163 (17) −0.0001 (14) 0.0032 (14) 0.0056 (14)
C4 0.0152 (17) 0.0084 (15) 0.0117 (16) 0.0021 (13) 0.0061 (13) 0.0011 (13)
C5 0.0099 (15) 0.0080 (15) 0.0064 (14) −0.0002 (12) 0.0010 (12) 0.0026 (12)
N1 0.0119 (13) 0.0090 (13) 0.0128 (13) 0.0032 (11) 0.0050 (11) 0.0040 (11)
N2 0.0209 (16) 0.0133 (15) 0.0156 (14) 0.0029 (12) 0.0077 (12) 0.0089 (12)
O1 0.0133 (12) 0.0068 (11) 0.0075 (11) 0.0025 (9) 0.0004 (9) 0.0009 (9)
O2 0.0126 (11) 0.0060 (11) 0.0093 (10) 0.0004 (9) 0.0045 (9) 0.0019 (9)
O3 0.0137 (11) 0.0072 (11) 0.0089 (11) 0.0032 (9) 0.0036 (9) 0.0032 (9)
O4 0.0134 (11) 0.0080 (11) 0.0091 (11) 0.0042 (9) 0.0044 (9) 0.0029 (9)
O5 0.0149 (12) 0.0075 (11) 0.0072 (11) 0.0021 (9) 0.0028 (9) 0.0020 (9)
O6 0.0127 (11) 0.0082 (11) 0.0086 (11) 0.0016 (9) −0.0003 (9) 0.0013 (9)
O7 0.0107 (11) 0.0075 (11) 0.0077 (11) −0.0004 (9) −0.0008 (9) 0.0008 (9)
P1 0.0101 (4) 0.0055 (4) 0.0064 (4) 0.0017 (3) 0.0022 (3) 0.0014 (3)
P2 0.0104 (4) 0.0049 (4) 0.0062 (4) 0.0012 (3) 0.0014 (3) 0.0006 (3)
Cu1 0.0123 (2) 0.0056 (2) 0.0063 (2) 0.00188 (15) 0.00214 (15) 0.00108 (15)
Cu2 0.0109 (3) 0.0053 (3) 0.0098 (3) 0.0012 (2) −0.0012 (2) 0.0005 (2)
O1W 0.0233 (15) 0.0366 (17) 0.0267 (15) 0.0095 (13) 0.0093 (12) 0.0132 (13)

Geometric parameters (Å, °)

C1—N2 1.318 (4) O2—Cu1 1.936 (2)
C1—N1 1.329 (4) O3—P1 1.529 (2)
C1—H1 0.9300 O3—Cu1iii 1.962 (2)
C2—C3 1.343 (5) O4—P2 1.534 (2)
C2—N1 1.377 (4) O4—Cu1i 2.003 (2)
C2—H2 0.9300 O5—P2 1.523 (2)
C3—N2 1.364 (4) O5—Cu1 1.930 (2)
C3—H3 0.9300 O6—P2 1.521 (2)
C4—N1 1.462 (4) O6—Cu2 1.959 (2)
C4—C5 1.528 (4) O7—H7 0.8200
C4—H4A 0.9700 P2—C5i 1.842 (3)
C4—H4B 0.9700 Cu1—O3iii 1.962 (2)
C5—O7 1.444 (4) Cu1—O4i 2.003 (2)
C5—P2i 1.842 (3) Cu2—O1i 1.950 (2)
C5—P1 1.857 (3) Cu2—O1iv 1.950 (2)
N2—H2A 0.8600 Cu2—O6v 1.959 (2)
O1—P1 1.519 (2) O1W—H1A 0.88 (5)
O1—Cu2ii 1.950 (2) O1W—H1B 0.87 (2)
O2—P1 1.530 (2)
N2—C1—N1 108.3 (3) P2—O4—Cu1i 119.28 (13)
N2—C1—H1 125.8 P2—O5—Cu1 131.88 (14)
N1—C1—H1 125.8 P2—O6—Cu2 136.89 (14)
C3—C2—N1 107.0 (3) C5—O7—H7 109.5
C3—C2—H2 126.5 O1—P1—O3 111.33 (12)
N1—C2—H2 126.5 O1—P1—O2 112.88 (13)
C2—C3—N2 107.0 (3) O3—P1—O2 112.51 (12)
C2—C3—H3 126.5 O1—P1—C5 106.82 (13)
N2—C3—H3 126.5 O3—P1—C5 108.50 (14)
N1—C4—C5 114.6 (3) O2—P1—C5 104.30 (13)
N1—C4—H4A 108.6 O6—P2—O5 109.75 (13)
C5—C4—H4A 108.6 O6—P2—O4 114.99 (13)
N1—C4—H4B 108.6 O5—P2—O4 112.22 (12)
C5—C4—H4B 108.6 O6—P2—C5i 107.03 (13)
H4A—C4—H4B 107.6 O5—P2—C5i 108.36 (14)
O7—C5—C4 112.5 (3) O4—P2—C5i 104.02 (13)
O7—C5—P2i 108.6 (2) O5—Cu1—O2 174.89 (9)
C4—C5—P2i 114.1 (2) O5—Cu1—O3iii 91.03 (9)
O7—C5—P1 105.3 (2) O2—Cu1—O3iii 91.03 (9)
C4—C5—P1 108.5 (2) O5—Cu1—O4i 90.70 (9)
P2i—C5—P1 107.27 (16) O2—Cu1—O4i 88.63 (9)
C1—N1—C2 108.3 (3) O3iii—Cu1—O4i 163.80 (9)
C1—N1—C4 124.8 (3) O1i—Cu2—O1iv 180.00 (13)
C2—N1—C4 126.7 (3) O1i—Cu2—O6 92.58 (9)
C1—N2—C3 109.3 (3) O1iv—Cu2—O6 87.42 (9)
C1—N2—H2A 125.3 O1i—Cu2—O6v 87.42 (9)
C3—N2—H2A 125.3 O1iv—Cu2—O6v 92.58 (9)
P1—O1—Cu2ii 131.22 (13) O6—Cu2—O6v 180.00 (19)
P1—O2—Cu1 118.08 (13) H1A—O1W—H1B 93 (4)
P1—O3—Cu1iii 125.96 (13)
N1—C2—C3—N2 −2.0 (4) P2i—C5—P1—O1 63.64 (18)
N1—C4—C5—O7 −56.4 (4) O7—C5—P1—O3 −60.7 (2)
N1—C4—C5—P2i 67.9 (3) C4—C5—P1—O3 60.0 (2)
N1—C4—C5—P1 −172.6 (2) P2i—C5—P1—O3 −176.24 (13)
N2—C1—N1—C2 −2.1 (4) O7—C5—P1—O2 59.4 (2)
N2—C1—N1—C4 −176.7 (3) C4—C5—P1—O2 −179.9 (2)
C3—C2—N1—C1 2.5 (4) P2i—C5—P1—O2 −56.12 (17)
C3—C2—N1—C4 177.0 (3) Cu2—O6—P2—O5 −156.45 (19)
C5—C4—N1—C1 −127.4 (3) Cu2—O6—P2—O4 75.9 (2)
C5—C4—N1—C2 58.9 (4) Cu2—O6—P2—C5i −39.1 (2)
N1—C1—N2—C3 0.9 (4) Cu1—O5—P2—O6 −147.75 (17)
C2—C3—N2—C1 0.7 (4) Cu1—O5—P2—O4 −18.6 (2)
Cu2ii—O1—P1—O3 −172.39 (16) Cu1—O5—P2—C5i 95.7 (2)
Cu2ii—O1—P1—O2 60.0 (2) Cu1i—O4—P2—O6 −115.31 (15)
Cu2ii—O1—P1—C5 −54.1 (2) Cu1i—O4—P2—O5 118.31 (14)
Cu1iii—O3—P1—O1 −118.20 (16) Cu1i—O4—P2—C5i 1.40 (18)
Cu1iii—O3—P1—O2 9.7 (2) P2—O5—Cu1—O3iii 156.80 (19)
Cu1iii—O3—P1—C5 124.53 (16) P2—O5—Cu1—O4i −39.31 (19)
Cu1—O2—P1—O1 −134.92 (14) P1—O2—Cu1—O3iii −124.84 (14)
Cu1—O2—P1—O3 98.05 (15) P1—O2—Cu1—O4i 71.36 (15)
Cu1—O2—P1—C5 −19.34 (18) P2—O6—Cu2—O1i 19.3 (2)
O7—C5—P1—O1 179.20 (18) P2—O6—Cu2—O1iv −160.7 (2)
C4—C5—P1—O1 −60.1 (2)

Symmetry codes: (i) −x, −y−1, −z; (ii) x−1, y−1, z−1; (iii) −x, −y−2, −z; (iv) x+1, y+1, z+1; (v) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O6vi 0.86 1.94 2.771 (4) 163
O7—H7···O4 0.82 2.16 2.724 (3) 126
O1W—H1A···O3vii 0.88 (5) 2.09 (3) 2.921 (4) 157 (5)
O1W—H1B···O2iv 0.87 (2) 2.13 (4) 2.851 (4) 140 (4)

Symmetry codes: (vi) x, y, z−1; (vii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2377).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Katz, H. E., Wilson, W. L. & Scheller, G. (1994). J. Am. Chem. Soc.116, 6636–6640.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046398/hy2377sup1.cif

e-66-m1576-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046398/hy2377Isup2.hkl

e-66-m1576-Isup2.hkl (95KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES