Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):o3124. doi: 10.1107/S1600536810045368

Benzoic acid–2,2′-biimidazole (2/1)

Xiaoli Gao a, Miaoli Zhu b,*
PMCID: PMC3011557  PMID: 21589428

Abstract

In the title compound, C6H6N4·2C7H6O2, the asymmetric unit contains a half-mol­ecule of biimidazole and one benzoic acid mol­ecule. The unit cell contains two biimidazole mol­ecules and four benzoic acid mol­ecules, giving the reported 2:1 ratio of benzoic acid to biimidazole. The biimidazole mol­ecule is located on an inversion center (passing through the central C—C bond). Strong N—H⋯O and O—H⋯N hydrogen bonds link the benzoic acid mol­ecules with the neutral biimidazole mol­ecules, which lie in planar sheets. In the crystal packing, the parallel sheets are related by a twofold rotation axis and an inversion centre, respectively, forming an inter­woven three-dimensional network via weak C=O⋯π inter­molecular inter­actions between neighboring mol­ecules.

Related literature

For background to the use of 2,2′-biimidazoles in crystal engineering, see: Matthews et al. (1990); Tadokoro & Nakasuji (2000). For similar structures, see: Gao et al. (2009); Li & Yang (2006); Mori & Miyoshi (2004).graphic file with name e-66-o3124-scheme1.jpg

Experimental

Crystal data

  • C6H6N4·2C7H6O2

  • M r = 378.38

  • Monoclinic, Inline graphic

  • a = 11.232 (5) Å

  • b = 5.082 (2) Å

  • c = 16.342 (7) Å

  • β = 99.832 (6)°

  • V = 919.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.962, T max = 0.990

  • 3367 measured reflections

  • 1550 independent reflections

  • 1243 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.098

  • wR(F 2) = 0.188

  • S = 1.25

  • 1550 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045368/fl2323sup1.cif

e-66-o3124-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045368/fl2323Isup2.hkl

e-66-o3124-Isup2.hkl (76.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C1/N2/C3/C2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.86 1.77 2.613 (5) 170
N1—H1⋯O2ii 0.88 (5) 1.89 (5) 2.767 (5) 173 (5)
C4—O2⋯Cg1 1.22 (1) 3.67 (1) 4.388 (2) 118 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by the Natural Science Foundation of Shanxi Province of China (grant No. 2010011011–2).

supplementary crystallographic information

Comment

Compounds containing the 2,2'-biimidazole moiety have been the focus of several investigations not only due to their biological activity, but also due to their contribution to the field of crystal engineering (Matthews, et al. 1990; Tadokoro & Nakasuji, 2000). In these compunds weak interactions, such as C—H···O and C=O···π, play crucial roles in building the overall three-dimensional structure (Mori & Miyoshi, 2004; Li & Yang, 2006; Gao et al., 2009).

The asymmetric unit of compound (I) contains one benzoic acid and 1/2 neutral biimidazole molecule, in which the imidazole rings are coplanar (Fig. 1). Each biimidazole molecule is linked to two benzoic acids via strong N—H···O and O—H···N hydrogen bonds (Table 1) twithin planar sheets (Figure 2). These sheets further assemble to layers via weak C=O···π (see Table 1, Cg1 for centre of N1/C1/N2/C3/C2) interactions between neighboring molecules and arrange alternatively and across along b and c axis in two-dimensional structure, and the dihedral angle of the planes are 92.7°. In contrast, two groups of these parallel layers on a twofold rotation axis and inversion centre forming a zigzag conformation along c axis in whole three-dimensional network as shown in Fig. 3.

Experimental

Benzoic acid (0.25 g, 2 mmol) and biimidazole (1 mmol) were dissolved in water(10 ml) by adding 1.4 ml of 2 M HCl while stirring. The solutions were stirred for 1 h, then filtered. Filtrate was left to stand at room temperature. Crystals suitable for data collection appeared after a few weeks by slow evaporation of the aqueous solvent.

Refinement

H atoms attached to C atoms were placed in geometrically idealized positions, with Csp2 = 0.93 Å, and constrained to ride on their carrier atoms, with Uiso(H) = 1.2Ueq(C). H atoms attached to N1 and O1 atoms were located in difference Fourier maps and refined with Uiso(H for N) = 0.06 Å2 and Uiso(H) = 1.5Ueq(O); N—H distance is 0.88 (5) Å and the O—H distance is 0.856 Å.

Figures

Fig. 1.

Fig. 1.

A view of the structure of compound (I) with displacement ellipsoids drawn at the 50% probability level, the biimidazole sits on a center of symmetry passing through the C1—C1 bond. Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Fig. 2.

Fig. 2.

H-bonds (dotting line) in (I). Symmetry codes: (ii) x, 1 + y, z; (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z.

Fig. 3.

Fig. 3.

The packing view in the title compound (I), dotting line for H-bonds.

Crystal data

C6H6N4·2C7H6O2 F(000) = 396
Mr = 378.38 Dx = 1.367 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 698 reflections
a = 11.232 (5) Å θ = 2.5–20.8°
b = 5.082 (2) Å µ = 0.10 mm1
c = 16.342 (7) Å T = 298 K
β = 99.832 (6)° Block, colorless
V = 919.2 (7) Å3 0.40 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART 1K CCD area-detector diffractometer 1550 independent reflections
Radiation source: fine-focus sealed tube 1243 reflections with I > 2σ(I)
graphite Rint = 0.047
ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −13→12
Tmin = 0.962, Tmax = 0.990 k = −6→2
3367 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188 H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.0781P] where P = (Fo2 + 2Fc2)/3
1550 reflections (Δ/σ)max < 0.001
131 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3655 (3) 0.6966 (8) 0.4607 (2) 0.0406 (10)
H1 0.383 (4) 0.809 (10) 0.423 (3) 0.064 (17)*
N2 0.3784 (3) 0.3740 (7) 0.5510 (2) 0.0389 (9)
C1 0.4360 (4) 0.5176 (8) 0.5031 (2) 0.0307 (10)
C2 0.2533 (4) 0.6694 (10) 0.4821 (3) 0.0436 (12)
H2 0.1846 0.7679 0.4624 0.052*
C3 0.2630 (4) 0.4717 (10) 0.5372 (3) 0.0453 (12)
H3 0.2003 0.4097 0.5625 0.054*
C4 0.4969 (4) 0.1219 (9) 0.3172 (3) 0.0376 (11)
C5 0.4964 (4) 0.3271 (9) 0.2521 (2) 0.0347 (10)
C6 0.5982 (4) 0.3745 (10) 0.2158 (3) 0.0451 (12)
H6 0.6687 0.2790 0.2329 0.054*
C7 0.5946 (4) 0.5616 (10) 0.1549 (3) 0.0516 (13)
H7 0.6625 0.5916 0.1308 0.062*
C8 0.4913 (4) 0.7050 (10) 0.1294 (3) 0.0491 (13)
H8 0.4897 0.8321 0.0883 0.059*
C9 0.3913 (4) 0.6618 (10) 0.1641 (3) 0.0458 (12)
H9 0.3216 0.7595 0.1468 0.055*
C10 0.3934 (4) 0.4739 (10) 0.2247 (3) 0.0441 (12)
H10 0.3244 0.4447 0.2478 0.053*
O1 0.5977 (3) −0.0029 (7) 0.3367 (2) 0.0532 (10)
H1A 0.5971 −0.1186 0.3747 0.080*
O2 0.4086 (3) 0.0801 (7) 0.3491 (2) 0.0517 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.043 (2) 0.037 (2) 0.042 (2) −0.0004 (19) 0.0097 (18) 0.009 (2)
N2 0.041 (2) 0.035 (2) 0.043 (2) −0.0011 (18) 0.0116 (17) 0.0088 (19)
C1 0.044 (2) 0.022 (2) 0.027 (2) 0.003 (2) 0.0077 (19) 0.0055 (19)
C2 0.037 (3) 0.048 (3) 0.046 (3) 0.004 (2) 0.007 (2) 0.000 (3)
C3 0.032 (2) 0.057 (3) 0.048 (3) 0.000 (2) 0.009 (2) 0.011 (3)
C4 0.041 (3) 0.029 (2) 0.043 (3) −0.004 (2) 0.009 (2) −0.002 (2)
C5 0.038 (2) 0.032 (3) 0.034 (2) −0.004 (2) 0.0064 (19) −0.005 (2)
C6 0.037 (3) 0.046 (3) 0.053 (3) 0.002 (2) 0.012 (2) 0.008 (3)
C7 0.048 (3) 0.052 (3) 0.060 (3) −0.001 (3) 0.024 (2) 0.013 (3)
C8 0.051 (3) 0.048 (3) 0.049 (3) −0.003 (3) 0.008 (2) 0.013 (3)
C9 0.036 (3) 0.046 (3) 0.054 (3) 0.006 (2) 0.004 (2) 0.009 (3)
C10 0.033 (2) 0.055 (3) 0.046 (3) −0.005 (2) 0.013 (2) 0.002 (3)
O1 0.0371 (17) 0.058 (2) 0.065 (2) 0.0067 (18) 0.0089 (15) 0.0244 (19)
O2 0.0465 (19) 0.051 (2) 0.063 (2) 0.0094 (17) 0.0220 (16) 0.0155 (18)

Geometric parameters (Å, °)

N1—C1 1.322 (5) C5—C10 1.385 (6)
N1—C2 1.371 (5) C5—C6 1.397 (6)
N1—H1 0.88 (5) C6—C7 1.371 (6)
N2—C1 1.319 (5) C6—H6 0.9300
N2—C3 1.370 (5) C7—C8 1.374 (6)
C1—C1i 1.469 (8) C7—H7 0.9300
C2—C3 1.342 (6) C8—C9 1.359 (6)
C2—H2 0.9300 C8—H8 0.9300
C3—H3 0.9300 C9—C10 1.373 (6)
C4—O2 1.216 (5) C9—H9 0.9300
C4—O1 1.289 (5) C10—H10 0.9300
C4—C5 1.489 (6) O1—H1A 0.8564
C1—N1—C2 106.9 (4) C6—C5—C4 121.4 (4)
C1—N1—H1 129 (3) C7—C6—C5 120.1 (4)
C2—N1—H1 124 (3) C7—C6—H6 119.9
C1—N2—C3 104.4 (4) C5—C6—H6 119.9
N2—C1—N1 112.4 (4) C6—C7—C8 120.5 (4)
N2—C1—C1i 124.0 (5) C6—C7—H7 119.8
N1—C1—C1i 123.6 (5) C8—C7—H7 119.8
C3—C2—N1 105.9 (4) C9—C8—C7 120.2 (5)
C3—C2—H2 127.0 C9—C8—H8 119.9
N1—C2—H2 127.0 C7—C8—H8 119.9
C2—C3—N2 110.4 (4) C8—C9—C10 120.0 (4)
C2—C3—H3 124.8 C8—C9—H9 120.0
N2—C3—H3 124.8 C10—C9—H9 120.0
O2—C4—O1 123.6 (4) C9—C10—C5 121.2 (4)
O2—C4—C5 121.7 (4) C9—C10—H10 119.4
O1—C4—C5 114.7 (4) C5—C10—H10 119.4
C10—C5—C6 118.0 (4) C4—O1—H1A 113.7
C10—C5—C4 120.6 (4)
C3—N2—C1—N1 0.0 (5) O1—C4—C5—C6 0.5 (6)
C3—N2—C1—C1i −179.6 (5) C10—C5—C6—C7 0.0 (7)
C2—N1—C1—N2 0.0 (5) C4—C5—C6—C7 178.9 (4)
C2—N1—C1—C1i 179.6 (5) C5—C6—C7—C8 0.4 (7)
C1—N1—C2—C3 0.0 (5) C6—C7—C8—C9 −0.3 (8)
N1—C2—C3—N2 0.0 (5) C7—C8—C9—C10 −0.1 (7)
C1—N2—C3—C2 0.0 (5) C8—C9—C10—C5 0.5 (7)
O2—C4—C5—C10 −1.3 (6) C6—C5—C10—C9 −0.4 (7)
O1—C4—C5—C10 179.3 (4) C4—C5—C10—C9 −179.3 (4)
O2—C4—C5—C6 179.8 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the [please define] ring.
D—H···A D—H H···A D···A D—H···A
O1—H1A···N2ii 0.86 1.77 2.613 (5) 170
N1—H1···O2iii 0.88 (5) 1.89 (5) 2.767 (5) 173 (5)
C4—O2···Cg1 1.216 (5) 3.674 (2) 4.388 (2) 118.37 (6)

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2323).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127. [DOI] [PubMed]
  4. Li, Y.-P. & Yang, P. (2006). Acta Cryst. E62, o3223–o3224.
  5. Matthews, D. P., McCarthy, J. R., Whitten, J. P., Kastner, P. R., Barney, C. L., Marshall, F. N., Ertel, M. A., Burkhard, T., Shea, P. J. & Kariya, T. (1990). J. Med. Chem.33, 317–327. [DOI] [PubMed]
  6. Mori, H. & Miyoshi, E. (2004). Bull. Chem. Soc. Jpn, 77, 687–690.
  7. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev.198, 205–218.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045368/fl2323sup1.cif

e-66-o3124-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045368/fl2323Isup2.hkl

e-66-o3124-Isup2.hkl (76.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES