Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):m1533–m1534. doi: 10.1107/S1600536810045216

trans-Bis[(1-ammonio­pentane-1,1-di­yl)diphospho­nato-κ2 O,O′]diaqua­copper(II)

Natalia V Tsaryk a,*, Anatolij V Dudko a, Alexandra N Kozachkova a, Vladimir V Bon a, Vasily I Pekhnyo a
PMCID: PMC3011560  PMID: 21589232

Abstract

In the title compound, [Cu(C5H14NO6P2)2(H2O)2], the CuII atom occupies a special position on an inversion centre. It exhibits a distorted octa­hedral coordination environment consisting of two O,O′-bidentate (1-ammonio­pentane-1,1-di­yl)diphospho­nate anions in the equatorial plane and two trans water mol­ecules located in axial positions. The ligand mol­ecules are coordinated to the CuII atom in their zwitterionic form via two O atoms from different phospho­nate groups, creating two six–membered chelate rings with a screw-boat conformation. The CuO6 coordination polyhedron is strongly elongated in the axial direction with 0.6 Å longer bonds than those in the equatorial plane. Intra­molecular N—H⋯O hydrogen bonding helps to stabilize the mol­ecular configuration. The presence of supra­molecular —PO(OH)⋯O(OH)P— units parallel to (100) and other O—H⋯O and N—H⋯O hydrogen bonds establish the three-dimensional set-up.

Related literature

For general background to organic diphospho­nic acids and their metal complexes, see: Eberhardt et al. (2005); Matczak-Jon & Videnova-Adrabinska (2005). For related structures, see: Sergienko et al. (1997, 1999).graphic file with name e-66-m1533-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H14NO6P2)2(H2O)2]

  • M r = 591.80

  • Triclinic, Inline graphic

  • a = 5.5629 (1) Å

  • b = 10.0236 (2) Å

  • c = 10.5237 (2) Å

  • α = 69.315 (1)°

  • β = 86.666 (1)°

  • γ = 88.398 (1)°

  • V = 548.03 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 173 K

  • 0.35 × 0.15 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.648, T max = 0.899

  • 5322 measured reflections

  • 2277 independent reflections

  • 2104 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.064

  • S = 1.07

  • 2277 reflections

  • 168 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045216/wm2420sup1.cif

e-66-m1533-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045216/wm2420Isup2.hkl

e-66-m1533-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O4 1.9381 (12)
Cu1—O1 1.9524 (12)
Cu1—O7 2.5666 (15)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O3i 0.91 (2) 1.98 (3) 2.849 (2) 158 (2)
N1—H12N⋯O7ii 0.88 (2) 2.08 (3) 2.945 (2) 167 (2)
N1—H13N⋯O5i 0.89 (3) 1.99 (3) 2.849 (2) 162 (2)
O2—H2O⋯O3iii 0.79 (2) 1.79 (2) 2.5741 (18) 178 (3)
O6—H6O⋯O5iv 0.79 (2) 1.80 (2) 2.5848 (18) 176 (3)
O7—H71O⋯O4v 0.79 (2) 2.04 (2) 2.8071 (19) 165 (3)
O7—H72O⋯O2ii 0.79 (2) 2.56 (3) 3.010 (2) 118 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Ukraininan National Academy of Sciences for financial support of this work.

supplementary crystallographic information

Comment

The investigation of organic diphosphonic acids and their metal complexes attracts constant interest of chemists because of their potential applications as drugs preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). Some transition metal diphosphonates can improve fixation of cementless metal implants by enhancing the extent of osteointegration (Eberhardt et al., 2005). Therefore, a detailed structural investigation of diphosphonates may help to better understand their structure-property correlations.

Several structures of copper diphosphonates have been published earlier (Sergienko et al., 1997, 1999). The present paper reports the structure of the first complex compound with (1-ammoniopentane-1,1-diyl)diphosphonic acid.

The asymmetric unit of title compound contains one half of the molecule. The CuII atom occupies a special position on a crystallographic inversion centre, which generates another half of the molecule (Fig. 1). The central CuII atom exhibits a distorted octahedral coordination geometry consisting of two O,O'-bidentantely coordinating ligand molecules in the equatorial plane and two trans water molecules, located in the axial positions. The ligand molecules are coordinated to CuII in their zwitterionic form via two O atoms from different phosphonate groups creating two six-membered chelate metalla rings with a screw-boat conformation. The CuO6 coordination polyhedron is strongly elongated in the axial direction: The Cu1—O7 bond is ~ 0.6 Å longer than the Cu1—O1 and Cu1—O4 bonds (Table 1), which is characteristic for Jahn-Teller distorted CuII complexes with an octahedral coordination (Sergienko et al., 1997). The values of the equatorial O—Cu—O angles are in the range of 80.05 (5)–99.95 (5)°, indicating a significiant deviation from the ideal values. This can be explained by the presence of a strong intramolecular hydrogen bond N1—H12···O7 (Fig. 1, Table 2), which partially influences the configuration of the molecule. The crystal structure of title compound contains supramolecular units —PO(OH)···O(OH)P— parallel to (100) that, together with strong O—H···O and N—H···O hydrogen bonds, create a three-dimensional structure (Fig. 2, Table 2).

Experimental

Light blue crystals of the title compound were obtained from the mixture of CuSO4.5H2O (0.2 mmol, 0.04995 g) and 1-aminopentane-1,1-diyldiphosphonic acid (0.4 mmol, 0.09885 g) in 5 ml of H2O, adjusted to pH ~ 4 with 0.25M NaOH. The combined solution was stored in a dark place for slow evaporation. After 20 days of staying, suitable crystals for X-ray data collection were obtained.

Refinement

H atoms bonded to O and N atoms were located in a difference map and refined with distance restraint of 0.82 (2) Å for OH and without any restraints for NH. Other H atoms, which are bonded to C atoms, were positioned geometrically regarding to hybridization and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)] and C—H = 0.99 Å for CH2 [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular configuration of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is emphasized by dotted lines.

Fig. 2.

Fig. 2.

The packing diagram of the title compound viewed down the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Cu(C5H14NO6P2)2(H2O)2] Z = 1
Mr = 591.80 F(000) = 307
Triclinic, P1 Dx = 1.793 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5629 (1) Å Cell parameters from 3621 reflections
b = 10.0236 (2) Å θ = 2.4–26.6°
c = 10.5237 (2) Å µ = 1.36 mm1
α = 69.315 (1)° T = 173 K
β = 86.666 (1)° Rod, light blue
γ = 88.398 (1)° 0.35 × 0.15 × 0.08 mm
V = 548.03 (2) Å3

Data collection

Bruker APEXII CCD diffractometer 2277 independent reflections
Radiation source: fine-focus sealed tube 2104 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 26.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −7→6
Tmin = 0.648, Tmax = 0.899 k = −12→12
5322 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4491P] where P = (Fo2 + 2Fc2)/3
2277 reflections (Δ/σ)max < 0.001
168 parameters Δρmax = 0.43 e Å3
4 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.5000 0.5000 0.01029 (10)
P1 0.98580 (8) 0.44423 (5) 0.21486 (4) 0.00887 (11)
P2 0.90052 (8) 0.20736 (5) 0.48297 (5) 0.00893 (11)
N1 0.5396 (3) 0.34163 (17) 0.32262 (17) 0.0112 (3)
H11N 0.458 (4) 0.367 (2) 0.245 (3) 0.017*
H12N 0.539 (4) 0.416 (3) 0.348 (2) 0.017*
H13N 0.444 (4) 0.274 (3) 0.380 (2) 0.017*
O1 1.0859 (2) 0.49686 (13) 0.31854 (12) 0.0116 (3)
O2 0.8085 (2) 0.55876 (14) 0.12618 (14) 0.0136 (3)
H2O 0.813 (5) 0.573 (3) 0.0476 (18) 0.040 (8)*
O3 1.1764 (2) 0.40075 (14) 0.12969 (13) 0.0120 (3)
O4 0.8517 (2) 0.31422 (13) 0.55360 (13) 0.0114 (3)
O5 1.1555 (2) 0.15980 (13) 0.46941 (13) 0.0119 (3)
O6 0.7259 (2) 0.08082 (14) 0.55649 (14) 0.0131 (3)
H6O 0.767 (5) 0.009 (2) 0.546 (3) 0.033 (8)*
C1 0.7927 (3) 0.28852 (18) 0.31004 (18) 0.0098 (3)
C2 0.7970 (3) 0.17564 (19) 0.24218 (19) 0.0136 (4)
H2A 0.9659 0.1442 0.2349 0.016*
H2B 0.7053 0.0919 0.3029 0.016*
C3 0.6952 (4) 0.2217 (2) 0.10125 (19) 0.0156 (4)
H3A 0.5172 0.2165 0.1103 0.019*
H3B 0.7404 0.3217 0.0488 0.019*
C4 0.7925 (4) 0.1255 (2) 0.0260 (2) 0.0231 (4)
H4A 0.7598 0.0250 0.0831 0.028*
H4B 0.9693 0.1369 0.0113 0.028*
C5 0.6820 (5) 0.1581 (3) −0.1105 (2) 0.0337 (6)
H5A 0.5063 0.1523 −0.0973 0.050*
H5B 0.7410 0.0886 −0.1515 0.050*
H5C 0.7275 0.2543 −0.1709 0.050*
O7 1.3880 (3) 0.39603 (15) 0.61934 (15) 0.0182 (3)
H71O 1.511 (4) 0.358 (3) 0.610 (3) 0.034 (8)*
H72O 1.335 (5) 0.342 (3) 0.689 (2) 0.045 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01286 (17) 0.01044 (16) 0.00899 (16) −0.00195 (11) 0.00097 (12) −0.00526 (12)
P1 0.0090 (2) 0.0103 (2) 0.0078 (2) −0.00018 (16) −0.00004 (17) −0.00388 (17)
P2 0.0094 (2) 0.0088 (2) 0.0089 (2) −0.00008 (16) −0.00038 (17) −0.00345 (17)
N1 0.0092 (8) 0.0124 (8) 0.0121 (8) −0.0011 (6) −0.0007 (6) −0.0045 (7)
O1 0.0125 (6) 0.0135 (6) 0.0099 (6) −0.0031 (5) 0.0013 (5) −0.0055 (5)
O2 0.0160 (7) 0.0145 (6) 0.0094 (7) 0.0037 (5) −0.0007 (5) −0.0035 (5)
O3 0.0106 (6) 0.0161 (6) 0.0098 (6) 0.0010 (5) 0.0003 (5) −0.0057 (5)
O4 0.0140 (6) 0.0109 (6) 0.0104 (6) −0.0023 (5) 0.0013 (5) −0.0050 (5)
O5 0.0105 (6) 0.0105 (6) 0.0151 (6) 0.0001 (5) −0.0013 (5) −0.0050 (5)
O6 0.0140 (7) 0.0097 (6) 0.0160 (7) −0.0013 (5) 0.0030 (5) −0.0053 (5)
C1 0.0082 (8) 0.0114 (8) 0.0109 (8) 0.0000 (6) 0.0000 (7) −0.0051 (7)
C2 0.0167 (9) 0.0122 (9) 0.0138 (9) −0.0007 (7) −0.0015 (7) −0.0069 (7)
C3 0.0182 (10) 0.0168 (9) 0.0138 (9) 0.0000 (7) −0.0043 (7) −0.0075 (8)
C4 0.0331 (12) 0.0222 (10) 0.0175 (10) 0.0016 (9) −0.0021 (9) −0.0117 (9)
C5 0.0554 (17) 0.0308 (12) 0.0196 (11) −0.0073 (11) −0.0052 (11) −0.0137 (10)
O7 0.0157 (7) 0.0187 (7) 0.0184 (8) 0.0027 (6) 0.0016 (6) −0.0050 (6)

Geometric parameters (Å, °)

Cu1—O4 1.9381 (12) O2—H2O 0.787 (17)
Cu1—O4i 1.9381 (12) O6—H6O 0.791 (17)
Cu1—O1 1.9524 (12) C1—C2 1.536 (2)
Cu1—O1i 1.9524 (12) C2—C3 1.527 (3)
Cu1—O7 2.5666 (15) C2—H2A 0.9900
Cu1—O7i 2.5666 (15) C2—H2B 0.9900
P1—O3 1.5023 (13) C3—C4 1.520 (3)
P1—O1 1.5075 (13) C3—H3A 0.9900
P1—O2 1.5649 (13) C3—H3B 0.9900
P1—C1 1.8594 (18) C4—C5 1.520 (3)
P2—O5 1.4986 (13) C4—H4A 0.9900
P2—O4 1.5153 (13) C4—H4B 0.9900
P2—O6 1.5618 (14) C5—H5A 0.9800
P2—C1 1.8404 (18) C5—H5B 0.9800
N1—C1 1.507 (2) C5—H5C 0.9800
N1—H11N 0.91 (2) O7—H71O 0.791 (17)
N1—H12N 0.88 (2) O7—H72O 0.786 (17)
N1—H13N 0.89 (3)
O4—Cu1—O4i 180.0 N1—C1—P2 107.55 (12)
O4—Cu1—O1 91.21 (5) C2—C1—P2 109.19 (12)
O4i—Cu1—O1 88.79 (5) N1—C1—P1 108.41 (12)
O4—Cu1—O1i 88.79 (5) C2—C1—P1 112.60 (12)
O4i—Cu1—O1i 91.21 (5) P2—C1—P1 108.34 (9)
O1—Cu1—O1i 180.0 C3—C2—C1 116.32 (15)
O4—Cu1—O7 92.80 (5) C3—C2—H2A 108.2
O4i—Cu1—O7 87.20 (5) C1—C2—H2A 108.2
O1—Cu1—O7 99.95 (5) C3—C2—H2B 108.2
O1i—Cu1—O7 80.05 (5) C1—C2—H2B 108.2
O3—P1—O1 113.56 (7) H2A—C2—H2B 107.4
O3—P1—O2 112.23 (7) C4—C3—C2 110.18 (16)
O1—P1—O2 109.39 (7) C4—C3—H3A 109.6
O3—P1—C1 109.48 (8) C2—C3—H3A 109.6
O1—P1—C1 107.00 (8) C4—C3—H3B 109.6
O2—P1—C1 104.67 (8) C2—C3—H3B 109.6
O5—P2—O4 118.15 (7) H3A—C3—H3B 108.1
O5—P2—O6 113.02 (7) C3—C4—C5 112.75 (18)
O4—P2—O6 105.54 (7) C3—C4—H4A 109.0
O5—P2—C1 107.25 (8) C5—C4—H4A 109.0
O4—P2—C1 106.99 (8) C3—C4—H4B 109.0
O6—P2—C1 105.01 (8) C5—C4—H4B 109.0
C1—N1—H11N 114.7 (14) H4A—C4—H4B 107.8
C1—N1—H12N 110.8 (15) C4—C5—H5A 109.5
H11N—N1—H12N 107 (2) C4—C5—H5B 109.5
C1—N1—H13N 112.7 (15) H5A—C5—H5B 109.5
H11N—N1—H13N 101 (2) C4—C5—H5C 109.5
H12N—N1—H13N 109 (2) H5A—C5—H5C 109.5
P1—O1—Cu1 139.17 (8) H5B—C5—H5C 109.5
P1—O2—H2O 118 (2) Cu1—O7—H71O 142 (2)
P2—O4—Cu1 124.94 (8) Cu1—O7—H72O 101 (2)
P2—O6—H6O 113 (2) H71O—O7—H72O 101 (3)
N1—C1—C2 110.60 (15)
O3—P1—O1—Cu1 −148.54 (11) O5—P2—C1—P1 −60.90 (10)
O2—P1—O1—Cu1 85.23 (13) O4—P2—C1—P1 66.79 (10)
C1—P1—O1—Cu1 −27.63 (14) O6—P2—C1—P1 178.62 (8)
O4—Cu1—O1—P1 35.20 (12) O3—P1—C1—N1 −146.05 (11)
O4i—Cu1—O1—P1 −144.80 (12) O1—P1—C1—N1 90.47 (12)
O7—Cu1—O1—P1 128.25 (12) O2—P1—C1—N1 −25.56 (13)
O5—P2—O4—Cu1 56.52 (11) O3—P1—C1—C2 −23.36 (14)
O6—P2—O4—Cu1 −175.96 (8) O1—P1—C1—C2 −146.83 (12)
C1—P2—O4—Cu1 −64.49 (11) O2—P1—C1—C2 97.14 (13)
O1—Cu1—O4—P2 19.60 (9) O3—P1—C1—P2 97.52 (9)
O1i—Cu1—O4—P2 −160.40 (9) O1—P1—C1—P2 −25.95 (10)
O7—Cu1—O4—P2 −80.42 (9) O2—P1—C1—P2 −141.98 (8)
O5—P2—C1—N1 −177.89 (11) N1—C1—C2—C3 57.4 (2)
O4—P2—C1—N1 −50.20 (13) P2—C1—C2—C3 175.60 (14)
O6—P2—C1—N1 61.64 (13) P1—C1—C2—C3 −64.01 (19)
O5—P2—C1—C2 62.07 (14) C1—C2—C3—C4 158.78 (17)
O4—P2—C1—C2 −170.25 (12) C2—C3—C4—C5 175.28 (19)
O6—P2—C1—C2 −58.41 (14)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H11N···O3ii 0.91 (2) 1.98 (3) 2.849 (2) 158 (2)
N1—H12N···O7i 0.88 (2) 2.08 (3) 2.945 (2) 167 (2)
N1—H13N···O5ii 0.89 (3) 1.99 (3) 2.849 (2) 162 (2)
O2—H2O···O3iii 0.79 (2) 1.79 (2) 2.5741 (18) 178 (3)
O6—H6O···O5iv 0.79 (2) 1.80 (2) 2.5848 (18) 176 (3)
O7—H71O···O4v 0.79 (2) 2.04 (2) 2.8071 (19) 165 (3)
O7—H72O···O2i 0.79 (2) 2.56 (3) 3.010 (2) 118 (3)

Symmetry codes: (ii) x−1, y, z; (i) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) −x+2, −y, −z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2420).

References

  1. Brandenburg, K. & Putz, H. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci.10, 622–626. [DOI] [PubMed]
  4. Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev.249, 2458–2488.
  5. Sergienko, V. S., Afonin, E. G. & Aleksandrov, G. G. (1999). Koord. Khim.25, 133–142
  6. Sergienko, V. S., Aleksandrov, G. G. & Afonin, E. G. (1997). Zh. Neorg. Khim.42, 1291–1296
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045216/wm2420sup1.cif

e-66-m1533-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045216/wm2420Isup2.hkl

e-66-m1533-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES