Abstract
All the non-H atoms of the title compound, C8H10N4S, lie on a crystallographic mirror plane and an intramolecular N—H⋯N hydrogen bond helps to stabilize the molecular conformation. In the crystal, molecules are linked through intermolecular N—H⋯N hydrogen bonds, forming zigzag C(7) chains along the a axis.
Related literature
For background to Schiff bases derived from thiosemicarbazone and its derivatives, see: Casas et al. (2001 ▶); Beraldo et al. (2001 ▶); Jouad et al. (2002 ▶); Swearingen et al. (2002 ▶). For bond-length data, see: Allen et al. (1987 ▶). For similar structures, see: Selvanayagam et al. (2002 ▶); Karakurt et al. (2003 ▶); Bernhardt et al. (2003 ▶); Sampath et al. (2003 ▶).
Experimental
Crystal data
C8H10N4S
M r = 194.26
Monoclinic,
a = 7.276 (3) Å
b = 6.581 (2) Å
c = 10.297 (3) Å
β = 92.997 (2)°
V = 492.4 (3) Å3
Z = 2
Mo Kα radiation
μ = 0.29 mm−1
T = 298 K
0.17 × 0.15 × 0.15 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004 ▶) T min = 0.953, T max = 0.958
3208 measured reflections
1106 independent reflections
640 reflections with I > 2σ(I)
R int = 0.041
Refinement
R[F 2 > 2σ(F 2)] = 0.043
wR(F 2) = 0.118
S = 1.02
1106 reflections
84 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.14 e Å−3
Δρmin = −0.20 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048853/hb5755sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048853/hb5755Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N4—H4⋯N2 | 0.90 (2) | 2.14 (3) | 2.585 (4) | 109 (2) |
| N3—H3⋯N1i | 0.90 (1) | 2.09 (1) | 2.989 (3) | 176 (3) |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
Thiosemicarbazone and its derivatives are important materials for the preparation of Schiff bases (Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). In this paper, the title new Schiff base compound derived from the condensation of 3-formylpyridine with 4-methylthiosemicarbazone is reported.
The molecule of the title compound, Fig. 1, possess a crystallographic mirror plane symmetry. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).
In the crystal, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).
Experimental
The title compound was prepared by the Schiff base condensation of equimolar quantities of 3-formylpyridine (0.107 g, 1 mmol) with 4-methylthiosemicarbazone (0.105 g, 1 mmol) in methanol. The excess methanol was removed by distillation. Colourless blocks were obtained by slow evaporation of an ethanol solution of the product in air.
Refinement
The amino H atoms were located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8).
Figures
Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis.
Crystal data
| C8H10N4S | F(000) = 204 |
| Mr = 194.26 | Dx = 1.310 Mg m−3 |
| Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yb | Cell parameters from 669 reflections |
| a = 7.276 (3) Å | θ = 2.7–24.5° |
| b = 6.581 (2) Å | µ = 0.29 mm−1 |
| c = 10.297 (3) Å | T = 298 K |
| β = 92.997 (2)° | Block, colourless |
| V = 492.4 (3) Å3 | 0.17 × 0.15 × 0.15 mm |
| Z = 2 |
Data collection
| Bruker APEXII CCD diffractometer | 1106 independent reflections |
| Radiation source: fine-focus sealed tube | 640 reflections with I > 2σ(I) |
| graphite | Rint = 0.041 |
| ω scans | θmax = 26.5°, θmin = 2.8° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
| Tmin = 0.953, Tmax = 0.958 | k = −8→8 |
| 3208 measured reflections | l = −12→10 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
| 1106 reflections | (Δ/σ)max < 0.001 |
| 84 parameters | Δρmax = 0.14 e Å−3 |
| 2 restraints | Δρmin = −0.19 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| S1 | 0.68926 (12) | 0.2500 | 0.29184 (9) | 0.0835 (4) | |
| N1 | −0.2929 (3) | 0.2500 | −0.1051 (2) | 0.0558 (7) | |
| N2 | 0.2508 (3) | 0.2500 | 0.0542 (2) | 0.0507 (6) | |
| N3 | 0.4324 (3) | 0.2500 | 0.1009 (2) | 0.0566 (7) | |
| N4 | 0.3217 (4) | 0.2500 | 0.3028 (3) | 0.0699 (8) | |
| C1 | 0.0350 (3) | 0.2500 | −0.1287 (3) | 0.0496 (7) | |
| C2 | −0.1201 (3) | 0.2500 | −0.0547 (3) | 0.0510 (8) | |
| H2 | −0.1020 | 0.2500 | 0.0354 | 0.061* | |
| C3 | −0.3159 (4) | 0.2500 | −0.2351 (3) | 0.0616 (9) | |
| H3A | −0.4353 | 0.2500 | −0.2720 | 0.074* | |
| C4 | −0.1733 (4) | 0.2500 | −0.3164 (3) | 0.0697 (10) | |
| H4A | −0.1954 | 0.2500 | −0.4061 | 0.084* | |
| C5 | 0.0049 (4) | 0.2500 | −0.2620 (3) | 0.0673 (10) | |
| H5 | 0.1041 | 0.2500 | −0.3154 | 0.081* | |
| C6 | 0.2213 (4) | 0.2500 | −0.0687 (3) | 0.0581 (8) | |
| H6 | 0.3209 | 0.2500 | −0.1217 | 0.070* | |
| C7 | 0.4698 (4) | 0.2500 | 0.2318 (3) | 0.0554 (8) | |
| C8 | 0.3272 (5) | 0.2500 | 0.4451 (3) | 0.0994 (13) | |
| H8A | 0.3310 | 0.1125 | 0.4762 | 0.149* | 0.50 |
| H8B | 0.2193 | 0.3162 | 0.4743 | 0.149* | 0.50 |
| H8C | 0.4349 | 0.3213 | 0.4781 | 0.149* | 0.50 |
| H3 | 0.519 (3) | 0.2500 | 0.042 (2) | 0.080* | |
| H4 | 0.212 (2) | 0.2500 | 0.259 (3) | 0.080* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0681 (6) | 0.1189 (9) | 0.0617 (6) | 0.000 | −0.0150 (4) | 0.000 |
| N1 | 0.0392 (13) | 0.0640 (17) | 0.0642 (17) | 0.000 | 0.0028 (12) | 0.000 |
| N2 | 0.0365 (12) | 0.0615 (16) | 0.0542 (15) | 0.000 | 0.0019 (11) | 0.000 |
| N3 | 0.0416 (13) | 0.0775 (18) | 0.0508 (16) | 0.000 | 0.0024 (11) | 0.000 |
| N4 | 0.0738 (18) | 0.085 (2) | 0.0518 (16) | 0.000 | 0.0136 (14) | 0.000 |
| C1 | 0.0369 (14) | 0.0618 (19) | 0.0503 (17) | 0.000 | 0.0058 (12) | 0.000 |
| C2 | 0.0425 (15) | 0.0593 (19) | 0.0512 (18) | 0.000 | 0.0011 (13) | 0.000 |
| C3 | 0.0450 (16) | 0.074 (2) | 0.064 (2) | 0.000 | −0.0062 (15) | 0.000 |
| C4 | 0.0587 (19) | 0.102 (3) | 0.0478 (19) | 0.000 | −0.0054 (16) | 0.000 |
| C5 | 0.0505 (18) | 0.097 (3) | 0.055 (2) | 0.000 | 0.0091 (15) | 0.000 |
| C6 | 0.0389 (15) | 0.078 (2) | 0.0579 (19) | 0.000 | 0.0108 (13) | 0.000 |
| C7 | 0.0624 (19) | 0.0541 (19) | 0.0499 (18) | 0.000 | 0.0033 (15) | 0.000 |
| C8 | 0.126 (3) | 0.121 (4) | 0.053 (2) | 0.000 | 0.023 (2) | 0.000 |
Geometric parameters (Å, °)
| S1—C7 | 1.682 (3) | C1—C6 | 1.460 (4) |
| N1—C2 | 1.335 (3) | C2—H2 | 0.9300 |
| N1—C3 | 1.340 (3) | C3—C4 | 1.367 (4) |
| N2—C6 | 1.273 (4) | C3—H3A | 0.9300 |
| N2—N3 | 1.382 (3) | C4—C5 | 1.385 (4) |
| N3—C7 | 1.361 (4) | C4—H4A | 0.9300 |
| N3—H3 | 0.899 (10) | C5—H5 | 0.9300 |
| N4—C7 | 1.334 (4) | C6—H6 | 0.9300 |
| N4—C8 | 1.463 (4) | C8—H8A | 0.9600 |
| N4—H4 | 0.898 (10) | C8—H8B | 0.9600 |
| C1—C5 | 1.379 (4) | C8—H8C | 0.9600 |
| C1—C2 | 1.394 (4) | ||
| C2—N1—C3 | 117.0 (2) | C3—C4—H4A | 120.8 |
| C6—N2—N3 | 117.1 (2) | C5—C4—H4A | 120.8 |
| C7—N3—N2 | 118.9 (2) | C1—C5—C4 | 119.9 (3) |
| C7—N3—H3 | 124 (2) | C1—C5—H5 | 120.0 |
| N2—N3—H3 | 117 (2) | C4—C5—H5 | 120.0 |
| C7—N4—C8 | 124.7 (3) | N2—C6—C1 | 121.7 (3) |
| C7—N4—H4 | 117 (2) | N2—C6—H6 | 119.2 |
| C8—N4—H4 | 119 (2) | C1—C6—H6 | 119.2 |
| C5—C1—C2 | 117.0 (2) | N4—C7—N3 | 114.7 (3) |
| C5—C1—C6 | 121.1 (3) | N4—C7—S1 | 125.2 (2) |
| C2—C1—C6 | 121.9 (3) | N3—C7—S1 | 120.1 (2) |
| N1—C2—C1 | 124.1 (2) | N4—C8—H8A | 109.5 |
| N1—C2—H2 | 118.0 | N4—C8—H8B | 109.5 |
| C1—C2—H2 | 118.0 | H8A—C8—H8B | 109.5 |
| N1—C3—C4 | 123.6 (3) | N4—C8—H8C | 109.5 |
| N1—C3—H3A | 118.2 | H8A—C8—H8C | 109.5 |
| C4—C3—H3A | 118.2 | H8B—C8—H8C | 109.5 |
| C3—C4—C5 | 118.5 (3) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N4—H4···N2 | 0.90 (2) | 2.14 (3) | 2.585 (4) | 109 (2) |
| N3—H3···N1i | 0.90 (1) | 2.09 (1) | 2.989 (3) | 176 (3) |
Symmetry codes: (i) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5755).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct.559, 99–106.
- Bernhardt, P. V., Caldwell, L. M., Lovejoy, D. B. & Richardson, D. R. (2003). Acta Cryst. C59, o629–o633. [DOI] [PubMed]
- Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Casas, J. S., Castineiras, A., Lobana, T. S., Sanchez, A., Sordo, J. & Garcia-Tasende, M. S. (2001). J. Chem. Crystallogr.31, 329–332.
- Jouad, E. M., Allain, M., Khan, M. A. & Bouet, G. M. (2002). J. Mol. Struct.604, 205–209.
- Karakurt, T., Dinçer, M., Yılmaz, I. & Çukurovalı, A. (2003). Acta Cryst. E59, o1997–o1999.
- Sampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346–o348. [DOI] [PubMed]
- Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, o1336–o1338.
- Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem.27, 724–731.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048853/hb5755sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048853/hb5755Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


