Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):o3324. doi: 10.1107/S1600536810048853

4-Methyl-1-(3-pyridyl­methyl­idene)thio­semicarbazide

Rongchun Li a,*
PMCID: PMC3011564  PMID: 21589600

Abstract

All the non-H atoms of the title compound, C8H10N4S, lie on a crystallographic mirror plane and an intra­molecular N—H⋯N hydrogen bond helps to stabilize the mol­ecular conformation. In the crystal, mol­ecules are linked through inter­molecular N—H⋯N hydrogen bonds, forming zigzag C(7) chains along the a axis.

Related literature

For background to Schiff bases derived from thio­semicarbazone and its derivatives, see: Casas et al. (2001); Beraldo et al. (2001); Jouad et al. (2002); Swearingen et al. (2002). For bond-length data, see: Allen et al. (1987). For similar structures, see: Selvanayagam et al. (2002); Karakurt et al. (2003); Bernhardt et al. (2003); Sampath et al. (2003).graphic file with name e-66-o3324-scheme1.jpg

Experimental

Crystal data

  • C8H10N4S

  • M r = 194.26

  • Monoclinic, Inline graphic

  • a = 7.276 (3) Å

  • b = 6.581 (2) Å

  • c = 10.297 (3) Å

  • β = 92.997 (2)°

  • V = 492.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.953, T max = 0.958

  • 3208 measured reflections

  • 1106 independent reflections

  • 640 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.118

  • S = 1.02

  • 1106 reflections

  • 84 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048853/hb5755sup1.cif

e-66-o3324-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048853/hb5755Isup2.hkl

e-66-o3324-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2 0.90 (2) 2.14 (3) 2.585 (4) 109 (2)
N3—H3⋯N1i 0.90 (1) 2.09 (1) 2.989 (3) 176 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Thiosemicarbazone and its derivatives are important materials for the preparation of Schiff bases (Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). In this paper, the title new Schiff base compound derived from the condensation of 3-formylpyridine with 4-methylthiosemicarbazone is reported.

The molecule of the title compound, Fig. 1, possess a crystallographic mirror plane symmetry. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).

In the crystal, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).

Experimental

The title compound was prepared by the Schiff base condensation of equimolar quantities of 3-formylpyridine (0.107 g, 1 mmol) with 4-methylthiosemicarbazone (0.105 g, 1 mmol) in methanol. The excess methanol was removed by distillation. Colourless blocks were obtained by slow evaporation of an ethanol solution of the product in air.

Refinement

The amino H atoms were located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis.

Crystal data

C8H10N4S F(000) = 204
Mr = 194.26 Dx = 1.310 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 669 reflections
a = 7.276 (3) Å θ = 2.7–24.5°
b = 6.581 (2) Å µ = 0.29 mm1
c = 10.297 (3) Å T = 298 K
β = 92.997 (2)° Block, colourless
V = 492.4 (3) Å3 0.17 × 0.15 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 1106 independent reflections
Radiation source: fine-focus sealed tube 640 reflections with I > 2σ(I)
graphite Rint = 0.041
ω scans θmax = 26.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.953, Tmax = 0.958 k = −8→8
3208 measured reflections l = −12→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3
1106 reflections (Δ/σ)max < 0.001
84 parameters Δρmax = 0.14 e Å3
2 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.68926 (12) 0.2500 0.29184 (9) 0.0835 (4)
N1 −0.2929 (3) 0.2500 −0.1051 (2) 0.0558 (7)
N2 0.2508 (3) 0.2500 0.0542 (2) 0.0507 (6)
N3 0.4324 (3) 0.2500 0.1009 (2) 0.0566 (7)
N4 0.3217 (4) 0.2500 0.3028 (3) 0.0699 (8)
C1 0.0350 (3) 0.2500 −0.1287 (3) 0.0496 (7)
C2 −0.1201 (3) 0.2500 −0.0547 (3) 0.0510 (8)
H2 −0.1020 0.2500 0.0354 0.061*
C3 −0.3159 (4) 0.2500 −0.2351 (3) 0.0616 (9)
H3A −0.4353 0.2500 −0.2720 0.074*
C4 −0.1733 (4) 0.2500 −0.3164 (3) 0.0697 (10)
H4A −0.1954 0.2500 −0.4061 0.084*
C5 0.0049 (4) 0.2500 −0.2620 (3) 0.0673 (10)
H5 0.1041 0.2500 −0.3154 0.081*
C6 0.2213 (4) 0.2500 −0.0687 (3) 0.0581 (8)
H6 0.3209 0.2500 −0.1217 0.070*
C7 0.4698 (4) 0.2500 0.2318 (3) 0.0554 (8)
C8 0.3272 (5) 0.2500 0.4451 (3) 0.0994 (13)
H8A 0.3310 0.1125 0.4762 0.149* 0.50
H8B 0.2193 0.3162 0.4743 0.149* 0.50
H8C 0.4349 0.3213 0.4781 0.149* 0.50
H3 0.519 (3) 0.2500 0.042 (2) 0.080*
H4 0.212 (2) 0.2500 0.259 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0681 (6) 0.1189 (9) 0.0617 (6) 0.000 −0.0150 (4) 0.000
N1 0.0392 (13) 0.0640 (17) 0.0642 (17) 0.000 0.0028 (12) 0.000
N2 0.0365 (12) 0.0615 (16) 0.0542 (15) 0.000 0.0019 (11) 0.000
N3 0.0416 (13) 0.0775 (18) 0.0508 (16) 0.000 0.0024 (11) 0.000
N4 0.0738 (18) 0.085 (2) 0.0518 (16) 0.000 0.0136 (14) 0.000
C1 0.0369 (14) 0.0618 (19) 0.0503 (17) 0.000 0.0058 (12) 0.000
C2 0.0425 (15) 0.0593 (19) 0.0512 (18) 0.000 0.0011 (13) 0.000
C3 0.0450 (16) 0.074 (2) 0.064 (2) 0.000 −0.0062 (15) 0.000
C4 0.0587 (19) 0.102 (3) 0.0478 (19) 0.000 −0.0054 (16) 0.000
C5 0.0505 (18) 0.097 (3) 0.055 (2) 0.000 0.0091 (15) 0.000
C6 0.0389 (15) 0.078 (2) 0.0579 (19) 0.000 0.0108 (13) 0.000
C7 0.0624 (19) 0.0541 (19) 0.0499 (18) 0.000 0.0033 (15) 0.000
C8 0.126 (3) 0.121 (4) 0.053 (2) 0.000 0.023 (2) 0.000

Geometric parameters (Å, °)

S1—C7 1.682 (3) C1—C6 1.460 (4)
N1—C2 1.335 (3) C2—H2 0.9300
N1—C3 1.340 (3) C3—C4 1.367 (4)
N2—C6 1.273 (4) C3—H3A 0.9300
N2—N3 1.382 (3) C4—C5 1.385 (4)
N3—C7 1.361 (4) C4—H4A 0.9300
N3—H3 0.899 (10) C5—H5 0.9300
N4—C7 1.334 (4) C6—H6 0.9300
N4—C8 1.463 (4) C8—H8A 0.9600
N4—H4 0.898 (10) C8—H8B 0.9600
C1—C5 1.379 (4) C8—H8C 0.9600
C1—C2 1.394 (4)
C2—N1—C3 117.0 (2) C3—C4—H4A 120.8
C6—N2—N3 117.1 (2) C5—C4—H4A 120.8
C7—N3—N2 118.9 (2) C1—C5—C4 119.9 (3)
C7—N3—H3 124 (2) C1—C5—H5 120.0
N2—N3—H3 117 (2) C4—C5—H5 120.0
C7—N4—C8 124.7 (3) N2—C6—C1 121.7 (3)
C7—N4—H4 117 (2) N2—C6—H6 119.2
C8—N4—H4 119 (2) C1—C6—H6 119.2
C5—C1—C2 117.0 (2) N4—C7—N3 114.7 (3)
C5—C1—C6 121.1 (3) N4—C7—S1 125.2 (2)
C2—C1—C6 121.9 (3) N3—C7—S1 120.1 (2)
N1—C2—C1 124.1 (2) N4—C8—H8A 109.5
N1—C2—H2 118.0 N4—C8—H8B 109.5
C1—C2—H2 118.0 H8A—C8—H8B 109.5
N1—C3—C4 123.6 (3) N4—C8—H8C 109.5
N1—C3—H3A 118.2 H8A—C8—H8C 109.5
C4—C3—H3A 118.2 H8B—C8—H8C 109.5
C3—C4—C5 118.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···N2 0.90 (2) 2.14 (3) 2.585 (4) 109 (2)
N3—H3···N1i 0.90 (1) 2.09 (1) 2.989 (3) 176 (3)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5755).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct.559, 99–106.
  3. Bernhardt, P. V., Caldwell, L. M., Lovejoy, D. B. & Richardson, D. R. (2003). Acta Cryst. C59, o629–o633. [DOI] [PubMed]
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Casas, J. S., Castineiras, A., Lobana, T. S., Sanchez, A., Sordo, J. & Garcia-Tasende, M. S. (2001). J. Chem. Crystallogr.31, 329–332.
  6. Jouad, E. M., Allain, M., Khan, M. A. & Bouet, G. M. (2002). J. Mol. Struct.604, 205–209.
  7. Karakurt, T., Dinçer, M., Yılmaz, I. & Çukurovalı, A. (2003). Acta Cryst. E59, o1997–o1999.
  8. Sampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346–o348. [DOI] [PubMed]
  9. Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, o1336–o1338.
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem.27, 724–731.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048853/hb5755sup1.cif

e-66-o3324-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048853/hb5755Isup2.hkl

e-66-o3324-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES