Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):m1681. doi: 10.1107/S1600536810049007

[N,N-Bis(2,6-diisopropyl­phen­yl)pent-2-ene-2,4-diiminato(1−)]bis­(1,2,4-diaza­phosphol-1-yl)aluminium(III)

Dongming Yang a, Chengfu Pi b, Yuqiang Ding a,*, Wenjun Zheng c
PMCID: PMC3011567  PMID: 21589338

Abstract

In the title compound, [Al(C29H41N2)(C2H2N2P)2], the AlIII atom is coordinated by four N atoms from β-diketiminate and 1,2,4-diaza­phospho­lide ligands in a slightly distorted tetra­hedral fashion.

Related literature

For similar related 1,2,4-diaza­phospho­lide complexes, see: Schmidpeter & Willhalm (1984); Cui et al. (2000); Ding et al. (2001); Kumar et al. (2004, 2005); Zheng et al. (2006); Wan et al. (2008); Pi et al. (2008, 2009).graphic file with name e-66-m1681-scheme1.jpg

Experimental

Crystal data

  • [Al(C29H41N2)(C2H2N2P)2]

  • M r = 614.67

  • Triclinic, Inline graphic

  • a = 10.578 (4) Å

  • b = 12.578 (5) Å

  • c = 13.498 (5) Å

  • α = 92.059 (5)°

  • β = 98.766 (5)°

  • γ = 96.516 (5)°

  • V = 1760.8 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.940, T max = 0.965

  • 7337 measured reflections

  • 6082 independent reflections

  • 4238 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.224

  • S = 1.02

  • 6082 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049007/bq2246sup1.cif

e-66-m1681-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049007/bq2246Isup2.hkl

e-66-m1681-Isup2.hkl (297.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20971058 and 20977042).

supplementary crystallographic information

Comment

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng et al., 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky et al., 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1H-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the AlIII ion was coordinated by four nitrogen atoms of 2,6-iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6-iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

Experimental

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Hexane was dried over sodium and freshly distilled prior to use. 0.481 g [2,6-iPr2C6H3NC(Me)C(H)C(Me)N]AlH2 (1 eq.) and 0.172 g (2 eq.) 1,2,4-Dia-zaphosphole were dissolved in 20 ml toulent. The mixture was stirred for 24 h at room temperature and the solvent was then removed and dried in vacuo. The residua was extracted with 15 ml hexane and the solution was concentrated to about 5 ml to afford colorless crystals at -30°C for several days (yield: 0.32 g. 50%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.96 Å, and Uiso(H) = 1.2–1.5 times of those of their parent atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title complex with the atom numbering scheme. The thermal displacements are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

[Al(C29H41N2)(C2H2N2P)2] Z = 2
Mr = 614.67 F(000) = 656
Triclinic, P1 Dx = 1.159 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.578 (4) Å Cell parameters from 872 reflections
b = 12.578 (5) Å θ = 3.4–25.6°
c = 13.498 (5) Å µ = 0.18 mm1
α = 92.059 (5)° T = 293 K
β = 98.766 (5)° Sheet, yellow
γ = 96.516 (5)° 0.35 × 0.20 × 0.20 mm
V = 1760.8 (11) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6082 independent reflections
Radiation source: fine-focus sealed tube 4238 reflections with I > 2σ(I)
graphite Rint = 0.037
phi and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→10
Tmin = 0.940, Tmax = 0.965 k = −11→14
7337 measured reflections l = −16→12

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1531P)2 + ] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.47 e Å3
6082 reflections Δρmin = −0.56 e Å3
389 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Al1 0.22665 (7) 0.79946 (6) 0.78731 (6) 0.0419 (3)
P1 −0.16571 (10) 0.71060 (10) 0.62146 (10) 0.0880 (4)
P2 0.18913 (13) 1.08771 (11) 0.97295 (11) 0.1047 (5)
N1 0.0608 (2) 0.7524 (2) 0.7248 (2) 0.0574 (6)
N2 −0.0133 (3) 0.7202 (4) 0.7910 (3) 0.1033 (13)
N3 0.2190 (2) 0.9204 (2) 0.86843 (18) 0.0537 (6)
N4 0.3412 (2) 0.9627 (2) 0.9076 (2) 0.0652 (7)
N5 0.3149 (2) 0.70050 (18) 0.86114 (16) 0.0479 (6)
N6 0.3367 (2) 0.83042 (17) 0.69477 (16) 0.0435 (5)
C1 −0.1375 (5) 0.6917 (5) 0.7425 (4) 0.125 (2)
H1 −0.2025 0.6632 0.7766 0.149*
C2 −0.0057 (4) 0.7533 (3) 0.6309 (3) 0.0762 (10)
H2 0.0327 0.7753 0.5763 0.091*
C3 0.1292 (3) 0.9771 (3) 0.8954 (3) 0.0717 (9)
H3 0.0415 0.9581 0.8738 0.086*
C4 0.3387 (4) 1.0485 (3) 0.9637 (3) 0.0806 (11)
H4 0.4141 1.0871 0.9975 0.097*
C5 0.5225 (3) 0.6473 (3) 0.9408 (3) 0.0738 (10)
H5A 0.5084 0.6655 1.0076 0.111*
H5B 0.6123 0.6638 0.9364 0.111*
H5C 0.4967 0.5722 0.9253 0.111*
C6 0.4445 (3) 0.7107 (2) 0.8674 (2) 0.0504 (7)
C7 0.5112 (3) 0.7783 (2) 0.8092 (2) 0.0525 (7)
H7 0.6000 0.7900 0.8291 0.063*
C8 0.4642 (3) 0.8307 (2) 0.7260 (2) 0.0493 (7)
C9 0.5580 (3) 0.8893 (3) 0.6683 (3) 0.0737 (10)
H9A 0.5349 0.8682 0.5983 0.111*
H9B 0.6432 0.8721 0.6920 0.111*
H9C 0.5562 0.9651 0.6778 0.111*
C10 0.2540 (3) 0.6173 (3) 0.9171 (2) 0.0582 (8)
C11 0.2390 (3) 0.6407 (3) 1.0157 (3) 0.0725 (10)
C12 0.1862 (4) 0.5554 (5) 1.0671 (4) 0.0997 (16)
H12 0.1770 0.5676 1.1339 0.120*
C13 0.1485 (5) 0.4568 (5) 1.0230 (5) 0.1080 (17)
H13 0.1132 0.4027 1.0593 0.130*
C14 0.1618 (4) 0.4355 (4) 0.9258 (4) 0.0977 (14)
H14 0.1370 0.3667 0.8966 0.117*
C15 0.2122 (3) 0.5161 (3) 0.8695 (3) 0.0715 (10)
C16 0.2732 (4) 0.7513 (4) 1.0672 (3) 0.0849 (12)
H16 0.3084 0.7988 1.0194 0.102*
C17 0.3773 (6) 0.7541 (6) 1.1615 (3) 0.138 (2)
H17A 0.3416 0.7163 1.2133 0.207*
H17B 0.4057 0.8272 1.1849 0.207*
H17C 0.4491 0.7207 1.1450 0.207*
C18 0.1544 (5) 0.7959 (5) 1.0947 (4) 0.1133 (16)
H18A 0.0886 0.7905 1.0366 0.170*
H18B 0.1766 0.8697 1.1178 0.170*
H18C 0.1231 0.7555 1.1468 0.170*
C19 0.2203 (4) 0.4905 (3) 0.7606 (3) 0.0836 (11)
H19 0.2347 0.5587 0.7289 0.100*
C20 0.0958 (6) 0.4301 (5) 0.7050 (5) 0.142 (2)
H20A 0.0760 0.3648 0.7371 0.213*
H20B 0.1056 0.4137 0.6368 0.213*
H20C 0.0271 0.4737 0.7059 0.213*
C21 0.3319 (6) 0.4291 (5) 0.7488 (5) 0.149 (2)
H21A 0.4112 0.4722 0.7761 0.224*
H21B 0.3313 0.4118 0.6789 0.224*
H21C 0.3242 0.3642 0.7839 0.224*
C22 0.2938 (3) 0.8573 (2) 0.5916 (2) 0.0476 (6)
C23 0.2616 (3) 0.9594 (2) 0.5707 (2) 0.0548 (7)
C24 0.2151 (4) 0.9782 (3) 0.4717 (3) 0.0702 (9)
H24 0.1928 1.0458 0.4561 0.084*
C25 0.2012 (4) 0.8998 (4) 0.3964 (3) 0.0782 (10)
H25 0.1699 0.9140 0.3306 0.094*
C26 0.2336 (4) 0.8011 (3) 0.4187 (3) 0.0776 (10)
H26 0.2243 0.7484 0.3672 0.093*
C27 0.2802 (3) 0.7761 (3) 0.5160 (2) 0.0613 (8)
C28 0.2762 (4) 1.0491 (3) 0.6497 (3) 0.0691 (9)
H28 0.3124 1.0225 0.7140 0.083*
C29 0.3710 (4) 1.1436 (3) 0.6248 (3) 0.0898 (12)
H29A 0.4510 1.1183 0.6161 0.135*
H29B 0.3860 1.1975 0.6789 0.135*
H29C 0.3348 1.1737 0.5641 0.135*
C30 0.1480 (5) 1.0861 (4) 0.6605 (3) 0.0971 (14)
H30A 0.1175 1.1232 0.6023 0.146*
H30B 0.1579 1.1336 0.7193 0.146*
H30C 0.0869 1.0252 0.6669 0.146*
C31 0.3132 (4) 0.6642 (3) 0.5355 (3) 0.0788 (10)
H31 0.3299 0.6582 0.6084 0.095*
C32 0.2037 (7) 0.5800 (4) 0.4934 (5) 0.143 (2)
H32A 0.1274 0.5943 0.5193 0.214*
H32B 0.2253 0.5107 0.5125 0.214*
H32C 0.1885 0.5813 0.4215 0.214*
C33 0.4358 (7) 0.6444 (5) 0.4945 (6) 0.163 (3)
H33A 0.4168 0.6331 0.4228 0.244*
H33B 0.4681 0.5822 0.5232 0.244*
H33C 0.4996 0.7056 0.5117 0.244*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Al1 0.0409 (4) 0.0430 (5) 0.0436 (4) 0.0117 (3) 0.0059 (3) 0.0077 (3)
P1 0.0608 (6) 0.0820 (7) 0.1125 (9) 0.0055 (5) −0.0134 (5) 0.0134 (6)
P2 0.0950 (8) 0.0948 (9) 0.1276 (10) 0.0281 (7) 0.0282 (7) −0.0450 (8)
N1 0.0461 (13) 0.0545 (15) 0.0702 (16) 0.0116 (11) 0.0003 (11) 0.0041 (12)
N2 0.069 (2) 0.160 (4) 0.084 (2) 0.013 (2) 0.0102 (17) 0.052 (2)
N3 0.0525 (13) 0.0565 (15) 0.0545 (13) 0.0158 (12) 0.0100 (11) −0.0011 (11)
N4 0.0556 (15) 0.0683 (18) 0.0710 (17) 0.0125 (13) 0.0084 (12) −0.0148 (14)
N5 0.0490 (13) 0.0486 (13) 0.0482 (12) 0.0112 (11) 0.0077 (10) 0.0143 (10)
N6 0.0479 (12) 0.0416 (12) 0.0439 (12) 0.0139 (10) 0.0088 (9) 0.0069 (9)
C1 0.087 (3) 0.152 (5) 0.157 (5) 0.031 (3) 0.061 (3) 0.084 (4)
C2 0.071 (2) 0.086 (3) 0.069 (2) 0.005 (2) 0.0050 (17) 0.0152 (19)
C3 0.0625 (19) 0.077 (2) 0.082 (2) 0.0228 (18) 0.0210 (16) −0.0035 (18)
C4 0.073 (2) 0.079 (3) 0.085 (2) 0.0090 (19) 0.0056 (18) −0.029 (2)
C5 0.062 (2) 0.081 (2) 0.083 (2) 0.0280 (18) 0.0020 (17) 0.0361 (19)
C6 0.0485 (15) 0.0505 (16) 0.0531 (15) 0.0147 (13) 0.0034 (12) 0.0080 (13)
C7 0.0419 (14) 0.0551 (17) 0.0626 (17) 0.0149 (13) 0.0074 (12) 0.0071 (14)
C8 0.0491 (15) 0.0446 (15) 0.0570 (16) 0.0123 (13) 0.0119 (12) 0.0037 (12)
C9 0.0579 (19) 0.086 (3) 0.084 (2) 0.0121 (18) 0.0261 (17) 0.026 (2)
C10 0.0487 (16) 0.066 (2) 0.0618 (18) 0.0156 (15) 0.0032 (13) 0.0298 (15)
C11 0.0610 (19) 0.100 (3) 0.0609 (19) 0.0191 (19) 0.0094 (15) 0.0404 (19)
C12 0.080 (3) 0.142 (5) 0.087 (3) 0.028 (3) 0.023 (2) 0.069 (3)
C13 0.086 (3) 0.109 (4) 0.132 (4) 0.008 (3) 0.016 (3) 0.073 (4)
C14 0.081 (3) 0.078 (3) 0.136 (4) 0.012 (2) 0.009 (3) 0.057 (3)
C15 0.0608 (19) 0.060 (2) 0.094 (3) 0.0116 (17) 0.0055 (18) 0.0335 (19)
C16 0.083 (2) 0.124 (4) 0.0481 (18) 0.015 (2) 0.0081 (17) 0.019 (2)
C17 0.114 (4) 0.229 (7) 0.066 (3) 0.032 (4) −0.004 (3) 0.000 (4)
C18 0.112 (4) 0.148 (5) 0.089 (3) 0.034 (3) 0.029 (3) 0.012 (3)
C19 0.098 (3) 0.0468 (19) 0.105 (3) 0.0131 (19) 0.010 (2) 0.0077 (19)
C20 0.137 (5) 0.130 (5) 0.139 (5) −0.030 (4) −0.008 (4) 0.003 (4)
C21 0.143 (5) 0.138 (5) 0.175 (6) 0.058 (4) 0.028 (4) −0.031 (4)
C22 0.0482 (14) 0.0521 (16) 0.0449 (14) 0.0108 (13) 0.0095 (11) 0.0087 (12)
C23 0.0603 (17) 0.0542 (17) 0.0519 (16) 0.0130 (14) 0.0088 (13) 0.0122 (13)
C24 0.078 (2) 0.072 (2) 0.064 (2) 0.0208 (19) 0.0079 (16) 0.0246 (17)
C25 0.086 (2) 0.099 (3) 0.0493 (18) 0.018 (2) 0.0036 (16) 0.0194 (19)
C26 0.092 (3) 0.091 (3) 0.0501 (18) 0.016 (2) 0.0098 (17) −0.0016 (18)
C27 0.072 (2) 0.0618 (19) 0.0533 (17) 0.0107 (16) 0.0168 (14) 0.0032 (14)
C28 0.094 (2) 0.0515 (18) 0.0631 (19) 0.0244 (18) 0.0038 (17) 0.0110 (15)
C29 0.108 (3) 0.060 (2) 0.095 (3) 0.006 (2) −0.002 (2) 0.013 (2)
C30 0.122 (4) 0.087 (3) 0.097 (3) 0.052 (3) 0.033 (3) 0.012 (2)
C31 0.111 (3) 0.059 (2) 0.069 (2) 0.017 (2) 0.017 (2) −0.0058 (16)
C32 0.202 (6) 0.065 (3) 0.139 (5) −0.008 (4) −0.023 (4) −0.014 (3)
C33 0.169 (6) 0.097 (4) 0.255 (8) 0.072 (4) 0.089 (6) 0.026 (5)

Geometric parameters (Å, °)

Al1—N1 1.848 (3) C16—H16 0.9800
Al1—N6 1.855 (2) C17—H17A 0.9600
Al1—N3 1.858 (3) C17—H17B 0.9600
Al1—N5 1.867 (2) C17—H17C 0.9600
P1—C1 1.646 (6) C18—H18A 0.9600
P1—C2 1.700 (4) C18—H18B 0.9600
P2—C3 1.711 (4) C18—H18C 0.9600
P2—C4 1.731 (4) C19—C21 1.506 (7)
N1—N2 1.320 (4) C19—C20 1.518 (7)
N1—C2 1.354 (4) C19—H19 0.9800
N2—C1 1.378 (6) C20—H20A 0.9600
N3—C3 1.336 (4) C20—H20B 0.9600
N3—N4 1.360 (4) C20—H20C 0.9600
N4—C4 1.301 (4) C21—H21A 0.9600
N5—C6 1.352 (4) C21—H21B 0.9600
N5—C10 1.460 (4) C21—H21C 0.9600
N6—C8 1.350 (4) C22—C23 1.393 (4)
N6—C22 1.461 (3) C22—C27 1.397 (4)
C1—H1 0.9300 C23—C24 1.390 (4)
C2—H2 0.9300 C23—C28 1.503 (4)
C3—H3 0.9300 C24—C25 1.370 (5)
C4—H4 0.9300 C24—H24 0.9300
C5—C6 1.502 (4) C25—C26 1.356 (5)
C5—H5A 0.9600 C25—H25 0.9300
C5—H5B 0.9600 C26—C27 1.391 (5)
C5—H5C 0.9600 C26—H26 0.9300
C6—C7 1.384 (4) C27—C31 1.511 (5)
C7—C8 1.379 (4) C28—C30 1.509 (6)
C7—H7 0.9300 C28—C29 1.546 (6)
C8—C9 1.498 (4) C28—H28 0.9800
C9—H9A 0.9600 C29—H29A 0.9600
C9—H9B 0.9600 C29—H29B 0.9600
C9—H9C 0.9600 C29—H29C 0.9600
C10—C11 1.389 (5) C30—H30A 0.9600
C10—C15 1.398 (5) C30—H30B 0.9600
C11—C12 1.407 (6) C30—H30C 0.9600
C11—C16 1.513 (6) C31—C32 1.504 (7)
C12—C13 1.347 (7) C31—C33 1.527 (7)
C12—H12 0.9300 C31—H31 0.9800
C13—C14 1.361 (7) C32—H32A 0.9600
C13—H13 0.9300 C32—H32B 0.9600
C14—C15 1.395 (5) C32—H32C 0.9600
C14—H14 0.9300 C33—H33A 0.9600
C15—C19 1.511 (6) C33—H33B 0.9600
C16—C18 1.523 (6) C33—H33C 0.9600
C16—C17 1.548 (6)
N1—Al1—N6 111.60 (12) C16—C17—H17C 109.5
N1—Al1—N3 107.50 (11) H17A—C17—H17C 109.5
N6—Al1—N3 110.79 (11) H17B—C17—H17C 109.5
N1—Al1—N5 116.84 (12) C16—C18—H18A 109.5
N6—Al1—N5 99.77 (10) C16—C18—H18B 109.5
N3—Al1—N5 110.22 (11) H18A—C18—H18B 109.5
C1—P1—C2 86.8 (2) C16—C18—H18C 109.5
C3—P2—C4 85.27 (17) H18A—C18—H18C 109.5
N2—N1—C2 112.7 (3) H18B—C18—H18C 109.5
N2—N1—Al1 110.9 (2) C21—C19—C15 112.2 (4)
C2—N1—Al1 135.9 (3) C21—C19—C20 110.1 (4)
N1—N2—C1 109.3 (3) C15—C19—C20 112.1 (4)
C3—N3—N4 113.3 (3) C21—C19—H19 107.4
C3—N3—Al1 138.0 (2) C15—C19—H19 107.4
N4—N3—Al1 108.65 (18) C20—C19—H19 107.4
C4—N4—N3 109.9 (3) C19—C20—H20A 109.5
C6—N5—C10 118.2 (2) C19—C20—H20B 109.5
C6—N5—Al1 117.43 (19) H20A—C20—H20B 109.5
C10—N5—Al1 124.27 (18) C19—C20—H20C 109.5
C8—N6—C22 118.4 (2) H20A—C20—H20C 109.5
C8—N6—Al1 117.63 (18) H20B—C20—H20C 109.5
C22—N6—Al1 123.90 (17) C19—C21—H21A 109.5
N2—C1—P1 116.9 (3) C19—C21—H21B 109.5
N2—C1—H1 121.6 H21A—C21—H21B 109.5
P1—C1—H1 121.6 C19—C21—H21C 109.5
N1—C2—P1 114.1 (3) H21A—C21—H21C 109.5
N1—C2—H2 122.9 H21B—C21—H21C 109.5
P1—C2—H2 122.9 C23—C22—C27 121.4 (3)
N3—C3—P2 114.3 (3) C23—C22—N6 120.7 (2)
N3—C3—H3 122.8 C27—C22—N6 117.8 (3)
P2—C3—H3 122.8 C24—C23—C22 117.8 (3)
N4—C4—P2 117.2 (3) C24—C23—C28 119.2 (3)
N4—C4—H4 121.4 C22—C23—C28 123.0 (3)
P2—C4—H4 121.4 C25—C24—C23 121.7 (3)
C6—C5—H5A 109.5 C25—C24—H24 119.2
C6—C5—H5B 109.5 C23—C24—H24 119.2
H5A—C5—H5B 109.5 C26—C25—C24 119.4 (3)
C6—C5—H5C 109.5 C26—C25—H25 120.3
H5A—C5—H5C 109.5 C24—C25—H25 120.3
H5B—C5—H5C 109.5 C25—C26—C27 122.3 (3)
N5—C6—C7 123.2 (3) C25—C26—H26 118.9
N5—C6—C5 119.6 (3) C27—C26—H26 118.9
C7—C6—C5 117.2 (3) C26—C27—C22 117.5 (3)
C8—C7—C6 129.0 (3) C26—C27—C31 119.4 (3)
C8—C7—H7 115.5 C22—C27—C31 123.2 (3)
C6—C7—H7 115.5 C23—C28—C30 111.5 (3)
N6—C8—C7 122.1 (3) C23—C28—C29 110.2 (3)
N6—C8—C9 119.2 (3) C30—C28—C29 110.5 (3)
C7—C8—C9 118.8 (3) C23—C28—H28 108.2
C8—C9—H9A 109.5 C30—C28—H28 108.2
C8—C9—H9B 109.5 C29—C28—H28 108.2
H9A—C9—H9B 109.5 C28—C29—H29A 109.5
C8—C9—H9C 109.5 C28—C29—H29B 109.5
H9A—C9—H9C 109.5 H29A—C29—H29B 109.5
H9B—C9—H9C 109.5 C28—C29—H29C 109.5
C11—C10—C15 121.9 (3) H29A—C29—H29C 109.5
C11—C10—N5 119.3 (3) H29B—C29—H29C 109.5
C15—C10—N5 118.8 (3) C28—C30—H30A 109.5
C10—C11—C12 116.5 (4) C28—C30—H30B 109.5
C10—C11—C16 123.5 (3) H30A—C30—H30B 109.5
C12—C11—C16 120.1 (4) C28—C30—H30C 109.5
C13—C12—C11 122.2 (5) H30A—C30—H30C 109.5
C13—C12—H12 118.9 H30B—C30—H30C 109.5
C11—C12—H12 118.9 C32—C31—C27 112.0 (4)
C12—C13—C14 120.7 (4) C32—C31—C33 110.7 (5)
C12—C13—H13 119.7 C27—C31—C33 111.0 (4)
C14—C13—H13 119.7 C32—C31—H31 107.6
C13—C14—C15 120.5 (5) C27—C31—H31 107.6
C13—C14—H14 119.8 C33—C31—H31 107.6
C15—C14—H14 119.8 C31—C32—H32A 109.5
C14—C15—C10 118.2 (4) C31—C32—H32B 109.5
C14—C15—C19 118.9 (4) H32A—C32—H32B 109.5
C10—C15—C19 122.9 (3) C31—C32—H32C 109.5
C11—C16—C18 111.3 (4) H32A—C32—H32C 109.5
C11—C16—C17 112.8 (4) H32B—C32—H32C 109.5
C18—C16—C17 109.8 (4) C31—C33—H33A 109.5
C11—C16—H16 107.6 C31—C33—H33B 109.5
C18—C16—H16 107.6 H33A—C33—H33B 109.5
C17—C16—H16 107.6 C31—C33—H33C 109.5
C16—C17—H17A 109.5 H33A—C33—H33C 109.5
C16—C17—H17B 109.5 H33B—C33—H33C 109.5
H17A—C17—H17B 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2246).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  4. Cui, C. M., Roesky, H. W., Hao, H. J., Schmidt, H. G. & Noletmeyer, M. (2000). Angew. Chem. Int. Ed.39, 1815–1817. [DOI] [PubMed]
  5. Ding, Y. Q., Roesky, H. W., Noletmeyer, M. & Schmidt, H. G. (2001). Organometallics, 20, 1190–1194.
  6. Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W. & Magull, J. (2005). Inorg. Chem.44, 1199–1201. [DOI] [PubMed]
  7. Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W., Vidovic, D. & Magull, J. (2004). Organometallics, 23, 6327–6329.
  8. Pi, C. F., Wan, L., Gu, Y. Y., Zheng, W. J., Wu, H. Y., Weng, L. H., Chen, Z. X. & Wu, L. M. (2008). Inorg. Chem.47, 9739–9741. [DOI] [PubMed]
  9. Pi, C. F., Wan, L., Liu, W. P., Pan, Z. F., Wu, H. Y., Wang, Y. H., Zheng, W. J., Weng, L. H., Chen, Z. X. & Wu, L. M. (2009). Inorg. Chem 48, 2967–2975. [DOI] [PubMed]
  10. Schmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed.23, 903–904.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Wan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266–2268. [DOI] [PubMed]
  14. Zheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548–1550.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049007/bq2246sup1.cif

e-66-m1681-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049007/bq2246Isup2.hkl

e-66-m1681-Isup2.hkl (297.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES