Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 30;66(Pt 12):m1696–m1697. doi: 10.1107/S1600536810048233

(4-tert-Butyl­pyridine)­chlorido[hydro­tris­(3,5-dimethyl­pyrazol-1-yl)borato]nitro­sylmolybdenum(I) dichloro­methane monosolvate

Mohammad B Kassim a,*,, Jon A McCleverty a
PMCID: PMC3011577  PMID: 21589350

Abstract

In the title compound, [Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2, the MoI atom adopts a distorted MoClN5 octa­hedral geometry with the hydro­tris­(3,5-dimethyl­pyrazol­yl)borate anion in an N,N′,N′′-tridentate tripodal (facial) coordination mode. A 4-tert-butyl­pyrine ligand, chloride anion and a nitrosyl cation complement the coodination of the MoI atom and an intra­molecular C—H⋯Cl hydrogen bond helps to stabilize the configuration of the complex mol­ecule. The packing is stabilized by an inter­molecular C—H⋯Cl hydrogen bond involving the complex mol­ecule and the CH2Cl2 solvent mol­ecule.

Related literature

For bond lengths and angles, see: Kassim & McCleverty (2010). For related compounds, see: Kassim (2003); Kassim et al. (2002); Jones et al. (1997); Amoroso et al. (1994). For background to poly-(pyrazol­yl)borate ligands, see: Trofimenko (1993). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-m1696-scheme1.jpg

Experimental

Crystal data

  • [Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2

  • M r = 678.73

  • Monoclinic, Inline graphic

  • a = 13.4525 (18) Å

  • b = 16.345 (2) Å

  • c = 14.818 (2) Å

  • β = 109.376 (2)°

  • V = 3073.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.878, T max = 0.930

  • 19465 measured reflections

  • 7040 independent reflections

  • 5113 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.119

  • S = 1.05

  • 7040 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.50 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048233/hb5750sup1.cif

e-66-m1696-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048233/hb5750Isup2.hkl

e-66-m1696-Isup2.hkl (344.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mo1—N1 1.999 (6)
Mo1—N21 2.164 (3)
Mo1—N11 2.184 (3)
Mo1—N41 2.207 (3)
Mo1—N31 2.248 (3)
Mo1—Cl1 2.4119 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36A⋯Cl1 0.96 2.57 3.437 (5) 150
C51—H51B⋯Cl1i 0.97 2.48 3.412 (6) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of Bristol for providing facilities and Universiti Kebangsaan Malaysia/World Bank for MBK’s PhD scholarship and UKM-OUP-TK-16–73/2010 grant.

supplementary crystallographic information

Comment

Poly(pyrazolyl)borate ligands [Trofimenko (1993)] have attracted many researchers for the coordination chemistry of molybdenum complexes [Kassim et al. (2002), Jones et al. (1997) & Amoroso et al. (1994)]. In the title compound, (I), the hydrotris(3,5-dimethyl(pyrazolyl)borate ligand bonds to the central molybdenum atom in a tridentate manner through the N-atom at the 6-position of the pyrazolyl rings. One chloride anion; a 4-tert-butylpyridine and a nitrosyl cation, bond via the N-atom, establish the distorted octahedral coordination of the Mo(I) centre (Fig1). In addition, one molecule of CH2Cl2 solvent cystallized together with the complex molecule.

In the complex molecule moeities, [Mo1/Cl1/N11/N12/C13/C14/C15/C16/C17/B1 (A)], [Mo1/N21/N 22/C23/C24/C25/C26/C27/B1 (B)] and [Mo1/O1/N1/N31/N32/C33/C34/C35/C36/C37/B1 (C)] are essentially planar with maximum deviations from the mean plane are 0.040 (4)° for B1, 0.029 (5)° for C27 and 0.043 (1)° for B1 atoms, respectively. The dihedral angles between A/B, A/C and B/C planes are 62.18 (10)°, 56.96 (9)° and 60.87 (10)°, respectively. Whereas the dihedral angles between these moeities and the 4-tert-butylpyridine, [N41/C42/C43/C44/C45/C46/C47/C49 (D)] which is essentially planar with maximum deviation from the mean plane is 0.056 (4)° for C47 atom, are A/D 70.28 (13)°, B/D 18.14 (14)° and C/D 55.67 (13)°, respectively.

The crystal structure is stabilized by an intramolecular hydrogen bonds C(36)—H(36 A)···Cl(1) (Fig2). The crystal packing is stabilized by an intermolecular hydrogen bonds C—H···Cl (Fig3).

Experimental

The title compound was synthesized from a reaction of Mo(NO)Tp*Cl2 (0.5 mmol) with 4- tert-butylpyridine (0.5 mmol) in dichloromethane in the presence of triethylammine at refluxing temperature under N2 atmosphere (Kassim 2003 & Kassim et al. 2002). Green blocks of (I) were obtained from a slow evaporation of dichloromethane solution of the title compound at room temperature. Yeild 87%.

Refinement

The H atoms attached to the B atom was located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range of 0.93–0.98, and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The title compound, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

The complex molecule picturing the intramolecular H-bond shown as dotted line. The displacement ellipsoids are drawn at the 50% probability level and H atom is shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

The packing diagram of the title compound, (I), view down the crystallographic b-axis showing the intermolecular H-bonds [symmetry code: -x + 1/2, y + 1/2,-z + 1/2]. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitary radius.

Crystal data

[Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2 F(000) = 1396
Mr = 678.73 Dx = 1.467 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7070 reflections
a = 13.4525 (18) Å θ = 0.9–0.9°
b = 16.345 (2) Å µ = 0.72 mm1
c = 14.818 (2) Å T = 173 K
β = 109.376 (2)° Block, green
V = 3073.7 (7) Å3 0.30 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 7040 independent reflections
Radiation source: fine-focus sealed tube 5113 reflections with I > 2σ(I)
graphite Rint = 0.036
ω/2θ scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −17→8
Tmin = 0.878, Tmax = 0.930 k = −20→21
19465 measured reflections l = −17→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 2.0808P] where P = (Fo2 + 2Fc2)/3
7040 reflections (Δ/σ)max < 0.001
365 parameters Δρmax = 1.54 e Å3
0 restraints Δρmin = −1.50 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer 1986) with a nominal stability of 0.1 K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 −0.01682 (2) 0.190933 (16) 0.201620 (19) 0.02194 (9)
Cl1 0.09795 (11) 0.07454 (9) 0.25484 (10) 0.0659 (3)
O1 −0.1941 (4) 0.0915 (3) 0.1352 (4) 0.0633 (14)
N1 −0.1472 (5) 0.1227 (3) 0.1546 (4) 0.0506 (16)
N11 −0.1070 (2) 0.30427 (15) 0.16343 (18) 0.0210 (5)
N12 −0.0789 (2) 0.36951 (15) 0.22502 (18) 0.0209 (6)
N21 −0.0271 (2) 0.21357 (17) 0.3421 (2) 0.0260 (6)
N22 −0.0113 (2) 0.29123 (17) 0.37923 (19) 0.0246 (6)
N31 0.1233 (2) 0.27485 (17) 0.25025 (19) 0.0257 (6)
N32 0.1155 (2) 0.34300 (17) 0.30134 (19) 0.0244 (6)
N41 0.0079 (2) 0.18807 (16) 0.06164 (19) 0.0238 (6)
C13 −0.1469 (3) 0.43159 (19) 0.1912 (2) 0.0261 (7)
C14 −0.2200 (3) 0.4062 (2) 0.1067 (2) 0.0275 (7)
H14 −0.2764 0.4364 0.0676 0.033*
C15 −0.1933 (3) 0.3268 (2) 0.0910 (2) 0.0239 (7)
C16 −0.2479 (3) 0.2725 (2) 0.0085 (3) 0.0361 (9)
H16A −0.1985 0.2546 −0.0215 0.054*
H16B −0.3041 0.3021 −0.0369 0.054*
H16C −0.2761 0.2258 0.0310 0.054*
C17 −0.1376 (3) 0.5122 (2) 0.2406 (3) 0.0406 (9)
H17A −0.1540 0.5057 0.2985 0.061*
H17B −0.1860 0.5504 0.1994 0.061*
H17C −0.0670 0.5324 0.2556 0.061*
C23 −0.0187 (3) 0.2914 (2) 0.4679 (2) 0.0323 (8)
C24 −0.0413 (3) 0.2125 (3) 0.4880 (3) 0.0389 (9)
H24 −0.0513 0.1943 0.5438 0.047*
C25 −0.0460 (3) 0.1657 (2) 0.4090 (3) 0.0334 (8)
C26 −0.0657 (4) 0.0756 (2) 0.3935 (3) 0.0450 (10)
H26A −0.1189 0.0665 0.3325 0.068*
H26B −0.0892 0.0538 0.4432 0.068*
H26C −0.0017 0.0487 0.3950 0.068*
C27 −0.0024 (4) 0.3667 (3) 0.5285 (3) 0.0457 (10)
H27A 0.0710 0.3810 0.5506 0.069*
H27B −0.0250 0.3564 0.5825 0.069*
H27C −0.0427 0.4109 0.4914 0.069*
C33 0.2073 (3) 0.3848 (2) 0.3266 (2) 0.0295 (8)
C34 0.2748 (3) 0.3431 (2) 0.2915 (3) 0.0341 (8)
H34 0.3435 0.3578 0.2979 0.041*
C35 0.2212 (3) 0.2748 (2) 0.2446 (3) 0.0314 (8)
C36 0.2608 (3) 0.2098 (3) 0.1939 (3) 0.0440 (10)
H36A 0.2254 0.1592 0.1959 0.066*
H36B 0.3352 0.2029 0.2247 0.066*
H36C 0.2470 0.2257 0.1285 0.066*
C37 0.2245 (3) 0.4632 (2) 0.3822 (3) 0.0411 (10)
H37A 0.1683 0.5006 0.3518 0.062*
H37B 0.2904 0.4869 0.3841 0.062*
H37C 0.2257 0.4523 0.4462 0.062*
C42 0.0214 (3) 0.1171 (2) 0.0216 (3) 0.0311 (8)
H42 0.0079 0.0686 0.0483 0.037*
C43 0.0542 (3) 0.1124 (2) −0.0569 (3) 0.0301 (8)
H43 0.0634 0.0615 −0.0811 0.036*
C44 0.0738 (3) 0.1834 (2) −0.1005 (2) 0.0253 (7)
C45 0.0539 (3) 0.2565 (2) −0.0615 (2) 0.0294 (8)
H45 0.0619 0.3059 −0.0894 0.035*
C46 0.0224 (3) 0.2567 (2) 0.0179 (2) 0.0284 (7)
H46 0.0107 0.3067 0.0424 0.034*
C47 0.1185 (3) 0.1786 (2) −0.1822 (3) 0.0323 (8)
C48 0.2272 (3) 0.1384 (3) −0.1414 (3) 0.0549 (12)
H48A 0.2618 0.1398 −0.1886 0.082*
H48B 0.2192 0.0827 −0.1247 0.082*
H48C 0.2688 0.1678 −0.0855 0.082*
C49 0.1299 (5) 0.2623 (3) −0.2217 (4) 0.0710 (17)
H49A 0.1589 0.2565 −0.2725 0.106*
H49B 0.1761 0.2954 −0.1717 0.106*
H49C 0.0620 0.2880 −0.2459 0.106*
C50 0.0491 (4) 0.1245 (3) −0.2622 (3) 0.0522 (12)
H50A −0.0201 0.1481 −0.2873 0.078*
H50B 0.0442 0.0709 −0.2375 0.078*
H50C 0.0793 0.1206 −0.3124 0.078*
C51 0.1685 (4) 0.5102 (3) 0.0856 (4) 0.0593 (13)
H51A 0.1460 0.5490 0.0333 0.071*
H51B 0.2240 0.5356 0.1375 0.071*
Cl52 0.06149 (10) 0.48814 (11) 0.12480 (9) 0.0811 (5)
Cl53 0.21867 (12) 0.42286 (8) 0.04752 (10) 0.0710 (4)
B1 0.0133 (3) 0.3618 (2) 0.3211 (3) 0.0258 (8)
H1 0.021 (2) 0.4210 (19) 0.360 (2) 0.016 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.02209 (15) 0.02111 (14) 0.02357 (15) −0.00110 (12) 0.00883 (11) 0.00138 (11)
Cl1 0.0607 (8) 0.0723 (8) 0.0686 (8) −0.0042 (6) 0.0267 (7) 0.0112 (6)
O1 0.073 (3) 0.081 (4) 0.044 (3) 0.029 (2) 0.030 (2) 0.024 (2)
N1 0.106 (5) 0.029 (2) 0.029 (2) 0.036 (2) 0.039 (3) 0.0152 (18)
N11 0.0200 (13) 0.0219 (13) 0.0212 (13) −0.0019 (11) 0.0071 (11) −0.0018 (10)
N12 0.0203 (14) 0.0220 (13) 0.0224 (13) −0.0034 (11) 0.0097 (11) −0.0033 (10)
N21 0.0244 (15) 0.0284 (15) 0.0253 (14) −0.0024 (11) 0.0087 (12) 0.0045 (11)
N22 0.0220 (15) 0.0313 (15) 0.0195 (13) −0.0025 (11) 0.0055 (11) −0.0001 (11)
N31 0.0199 (15) 0.0320 (15) 0.0261 (15) −0.0033 (12) 0.0087 (12) 0.0007 (12)
N32 0.0233 (15) 0.0271 (14) 0.0226 (14) −0.0034 (12) 0.0075 (12) −0.0007 (11)
N41 0.0241 (14) 0.0217 (13) 0.0272 (14) 0.0014 (11) 0.0105 (12) 0.0019 (11)
C13 0.0289 (18) 0.0224 (16) 0.0329 (18) 0.0021 (14) 0.0181 (15) 0.0013 (13)
C14 0.0249 (18) 0.0273 (17) 0.0310 (18) 0.0056 (14) 0.0103 (15) 0.0040 (14)
C15 0.0208 (16) 0.0293 (18) 0.0238 (16) 0.0003 (13) 0.0105 (13) 0.0016 (12)
C16 0.028 (2) 0.042 (2) 0.0318 (19) 0.0042 (16) 0.0010 (16) −0.0053 (16)
C17 0.041 (2) 0.0288 (19) 0.052 (2) 0.0030 (17) 0.0155 (19) −0.0067 (17)
C23 0.0283 (19) 0.049 (2) 0.0201 (17) −0.0032 (16) 0.0088 (15) 0.0009 (14)
C24 0.038 (2) 0.058 (3) 0.0223 (18) −0.0022 (18) 0.0116 (16) 0.0103 (16)
C25 0.029 (2) 0.039 (2) 0.0291 (19) −0.0049 (16) 0.0062 (15) 0.0095 (15)
C26 0.053 (3) 0.042 (2) 0.042 (2) −0.014 (2) 0.018 (2) 0.0110 (18)
C27 0.052 (3) 0.059 (3) 0.028 (2) −0.008 (2) 0.0166 (19) −0.0121 (18)
C33 0.0238 (18) 0.038 (2) 0.0221 (17) −0.0094 (15) 0.0012 (14) 0.0051 (14)
C34 0.0181 (18) 0.048 (2) 0.035 (2) −0.0075 (16) 0.0071 (15) 0.0048 (16)
C35 0.0209 (18) 0.042 (2) 0.0311 (19) 0.0007 (15) 0.0085 (15) 0.0064 (15)
C36 0.025 (2) 0.057 (3) 0.054 (3) 0.0037 (18) 0.0183 (19) −0.004 (2)
C37 0.039 (2) 0.043 (2) 0.038 (2) −0.0185 (18) 0.0083 (18) −0.0068 (17)
C42 0.039 (2) 0.0226 (18) 0.0367 (19) −0.0040 (15) 0.0187 (17) −0.0005 (14)
C43 0.035 (2) 0.0227 (17) 0.037 (2) −0.0006 (15) 0.0183 (16) −0.0036 (14)
C44 0.0223 (16) 0.0277 (17) 0.0278 (17) 0.0002 (14) 0.0108 (14) −0.0001 (13)
C45 0.037 (2) 0.0235 (17) 0.0324 (19) 0.0017 (15) 0.0181 (16) 0.0053 (14)
C46 0.034 (2) 0.0216 (16) 0.0327 (18) 0.0025 (14) 0.0146 (16) 0.0006 (13)
C47 0.038 (2) 0.0307 (19) 0.037 (2) −0.0018 (15) 0.0238 (17) 0.0000 (14)
C48 0.038 (3) 0.076 (3) 0.060 (3) 0.007 (2) 0.028 (2) −0.006 (2)
C49 0.124 (5) 0.041 (3) 0.084 (4) −0.003 (3) 0.083 (4) 0.007 (2)
C50 0.057 (3) 0.073 (3) 0.034 (2) −0.012 (2) 0.025 (2) −0.007 (2)
C51 0.046 (3) 0.076 (3) 0.056 (3) −0.023 (2) 0.016 (2) −0.001 (2)
Cl52 0.0496 (8) 0.1453 (14) 0.0461 (7) −0.0186 (8) 0.0129 (6) 0.0341 (8)
Cl53 0.0898 (10) 0.0600 (8) 0.0600 (8) −0.0163 (7) 0.0207 (7) 0.0117 (6)
B1 0.027 (2) 0.0265 (19) 0.0240 (19) −0.0045 (15) 0.0088 (16) −0.0033 (14)

Geometric parameters (Å, °)

Mo1—N1 1.999 (6) C27—H27A 0.9600
Mo1—N21 2.164 (3) C27—H27B 0.9600
Mo1—N11 2.184 (3) C27—H27C 0.9600
Mo1—N41 2.207 (3) C33—C34 1.368 (5)
Mo1—N31 2.248 (3) C33—C37 1.499 (5)
Mo1—Cl1 2.4119 (14) C34—C35 1.385 (5)
O1—N1 0.787 (6) C34—H34 0.9300
N11—C15 1.345 (4) C35—C36 1.496 (5)
N11—N12 1.373 (3) C36—H36A 0.9600
N12—C13 1.347 (4) C36—H36B 0.9600
N12—B1 1.552 (5) C36—H36C 0.9600
N21—C25 1.352 (4) C37—H37A 0.9600
N21—N22 1.371 (4) C37—H37B 0.9600
N22—C23 1.350 (4) C37—H37C 0.9600
N22—B1 1.540 (5) C42—C43 1.376 (5)
N31—C35 1.347 (4) C42—H42 0.9300
N31—N32 1.371 (4) C43—C44 1.395 (5)
N32—C33 1.351 (4) C43—H43 0.9300
N32—B1 1.529 (5) C44—C45 1.390 (5)
N41—C46 1.341 (4) C44—C47 1.522 (5)
N41—C42 1.342 (4) C45—C46 1.376 (5)
C13—C14 1.375 (5) C45—H45 0.9300
C13—C17 1.492 (5) C46—H46 0.9300
C14—C15 1.385 (5) C47—C49 1.517 (5)
C14—H14 0.9300 C47—C50 1.525 (5)
C15—C16 1.493 (5) C47—C48 1.532 (6)
C16—H16A 0.9600 C48—H48A 0.9600
C16—H16B 0.9600 C48—H48B 0.9600
C16—H16C 0.9600 C48—H48C 0.9600
C17—H17A 0.9600 C49—H49A 0.9600
C17—H17B 0.9600 C49—H49B 0.9600
C17—H17C 0.9600 C49—H49C 0.9600
C23—C24 1.380 (5) C50—H50A 0.9600
C23—C27 1.496 (5) C50—H50B 0.9600
C24—C25 1.382 (5) C50—H50C 0.9600
C24—H24 0.9300 C51—Cl53 1.751 (5)
C25—C26 1.501 (5) C51—Cl52 1.758 (5)
C26—H26A 0.9600 C51—H51A 0.9700
C26—H26B 0.9600 C51—H51B 0.9700
C26—H26C 0.9600 B1—H1 1.12 (3)
N1—Mo1—N21 95.86 (16) C23—C27—H27C 109.5
N1—Mo1—N11 92.03 (16) H27A—C27—H27C 109.5
N21—Mo1—N11 84.08 (10) H27B—C27—H27C 109.5
N1—Mo1—N41 92.79 (16) N32—C33—C34 107.7 (3)
N21—Mo1—N41 170.21 (10) N32—C33—C37 123.0 (3)
N11—Mo1—N41 91.05 (9) C34—C33—C37 129.4 (3)
N1—Mo1—N31 176.27 (16) C33—C34—C35 107.0 (3)
N21—Mo1—N31 84.37 (10) C33—C34—H34 126.5
N11—Mo1—N31 84.28 (10) C35—C34—H34 126.5
N41—Mo1—N31 86.70 (10) N31—C35—C34 108.9 (3)
N1—Mo1—Cl1 93.79 (15) N31—C35—C36 123.4 (3)
N21—Mo1—Cl1 93.37 (8) C34—C35—C36 127.7 (3)
N11—Mo1—Cl1 173.86 (8) C35—C36—H36A 109.5
N41—Mo1—Cl1 90.63 (8) C35—C36—H36B 109.5
N31—Mo1—Cl1 89.92 (8) H36A—C36—H36B 109.5
O1—N1—Mo1 173.1 (9) C35—C36—H36C 109.5
C15—N11—N12 107.0 (2) H36A—C36—H36C 109.5
C15—N11—Mo1 134.3 (2) H36B—C36—H36C 109.5
N12—N11—Mo1 118.68 (19) C33—C37—H37A 109.5
C13—N12—N11 109.5 (3) C33—C37—H37B 109.5
C13—N12—B1 129.8 (3) H37A—C37—H37B 109.5
N11—N12—B1 120.5 (3) C33—C37—H37C 109.5
C25—N21—N22 106.5 (3) H37A—C37—H37C 109.5
C25—N21—Mo1 134.0 (3) H37B—C37—H37C 109.5
N22—N21—Mo1 119.55 (19) N41—C42—C43 123.4 (3)
C23—N22—N21 109.9 (3) N41—C42—H42 118.3
C23—N22—B1 129.9 (3) C43—C42—H42 118.3
N21—N22—B1 120.2 (3) C42—C43—C44 120.5 (3)
C35—N31—N32 106.9 (3) C42—C43—H43 119.8
C35—N31—Mo1 135.5 (2) C44—C43—H43 119.8
N32—N31—Mo1 117.6 (2) C45—C44—C43 115.5 (3)
C33—N32—N31 109.4 (3) C45—C44—C47 123.9 (3)
C33—N32—B1 130.0 (3) C43—C44—C47 120.6 (3)
N31—N32—B1 120.5 (3) C46—C45—C44 120.9 (3)
C46—N41—C42 116.5 (3) C46—C45—H45 119.5
C46—N41—Mo1 121.9 (2) C44—C45—H45 119.5
C42—N41—Mo1 121.2 (2) N41—C46—C45 123.1 (3)
N12—C13—C14 107.7 (3) N41—C46—H46 118.4
N12—C13—C17 123.1 (3) C45—C46—H46 118.4
C14—C13—C17 129.2 (3) C49—C47—C44 112.1 (3)
C13—C14—C15 106.8 (3) C49—C47—C50 109.7 (4)
C13—C14—H14 126.6 C44—C47—C50 110.3 (3)
C15—C14—H14 126.6 C49—C47—C48 109.4 (4)
N11—C15—C14 109.0 (3) C44—C47—C48 106.7 (3)
N11—C15—C16 123.4 (3) C50—C47—C48 108.5 (3)
C14—C15—C16 127.6 (3) C47—C48—H48A 109.5
C15—C16—H16A 109.5 C47—C48—H48B 109.5
C15—C16—H16B 109.5 H48A—C48—H48B 109.5
H16A—C16—H16B 109.5 C47—C48—H48C 109.5
C15—C16—H16C 109.5 H48A—C48—H48C 109.5
H16A—C16—H16C 109.5 H48B—C48—H48C 109.5
H16B—C16—H16C 109.5 C47—C49—H49A 109.5
C13—C17—H17A 109.5 C47—C49—H49B 109.5
C13—C17—H17B 109.5 H49A—C49—H49B 109.5
H17A—C17—H17B 109.5 C47—C49—H49C 109.5
C13—C17—H17C 109.5 H49A—C49—H49C 109.5
H17A—C17—H17C 109.5 H49B—C49—H49C 109.5
H17B—C17—H17C 109.5 C47—C50—H50A 109.5
N22—C23—C24 107.5 (3) C47—C50—H50B 109.5
N22—C23—C27 122.9 (3) H50A—C50—H50B 109.5
C24—C23—C27 129.7 (3) C47—C50—H50C 109.5
C23—C24—C25 106.6 (3) H50A—C50—H50C 109.5
C23—C24—H24 126.7 H50B—C50—H50C 109.5
C25—C24—H24 126.7 Cl53—C51—Cl52 112.7 (3)
N21—C25—C24 109.5 (3) Cl53—C51—H51A 109.1
N21—C25—C26 121.5 (3) Cl52—C51—H51A 109.1
C24—C25—C26 129.0 (3) Cl53—C51—H51B 109.1
C25—C26—H26A 109.5 Cl52—C51—H51B 109.1
C25—C26—H26B 109.5 H51A—C51—H51B 107.8
H26A—C26—H26B 109.5 N32—B1—N22 109.3 (3)
C25—C26—H26C 109.5 N32—B1—N12 109.7 (3)
H26A—C26—H26C 109.5 N22—B1—N12 108.6 (3)
H26B—C26—H26C 109.5 N32—B1—H1 109.8 (16)
C23—C27—H27A 109.5 N22—B1—H1 110.9 (16)
C23—C27—H27B 109.5 N12—B1—H1 108.5 (16)
H27A—C27—H27B 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C36—H36A···Cl1 0.96 2.57 3.437 (5) 150
C51—H51B···Cl1i 0.97 2.48 3.412 (6) 161

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5750).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem.36, 10–18.
  6. Kassim, M. B. (2003). PhD thesis, University of Bristol, England.
  7. Kassim, M. B. & McCleverty, J. A. (2010). Acta Cryst. E66, m1541–m1542. [DOI] [PMC free article] [PubMed]
  8. Kassim, M. B., Paul, R. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). Inorg. Chim. Acta, 327, 160–168.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Trofimenko, S. (1993). Chem. Rev.93, 943–980.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048233/hb5750sup1.cif

e-66-m1696-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048233/hb5750Isup2.hkl

e-66-m1696-Isup2.hkl (344.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES