Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3181. doi: 10.1107/S1600536810045988

1-Benzoyl-3-(4-hy­droxy­phen­yl)thio­urea

Aisha A Al-abbasi a, Siew San Tan a, Mohammad B Kassim a,*
PMCID: PMC3011591  PMID: 21589476

Abstract

In the title compound, C14H12N2O2S, the amino­phenol and the benzoyl groups adopt a syn–anti configuration with respect to the thiono C=S group across the thio­urea C—N. The dihedral angle between the mean planes of the benzoyl and hy­droxy­phenyl rings is 36.77 (8)°. The mol­ecules are stabilized by intra­molecular N—H⋯O hydrogen bonds. In the crystal, weak inter­molecular C—H⋯O, O—H⋯S and N—H⋯O hydrogen bonds link the mol­ecules into a chain along the c axis.

Related literature

For the preparation and chemical properties of related compounds, see: Zhang et al. (2001). For related structures, see: Abosadiya et al. (2007); Hung et al. (2010); Yamin & Yusof (2003). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o3181-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O2S

  • M r = 272.33

  • Orthorhombic, Inline graphic

  • a = 5.5865 (10) Å

  • b = 14.451 (2) Å

  • c = 16.462 (3) Å

  • V = 1329.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.35 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.886, T max = 0.919

  • 7608 measured reflections

  • 2351 independent reflections

  • 2143 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.085

  • S = 1.05

  • 2351 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 958 Friedel pairs

  • Flack parameter: 0.09 (9)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045988/jj2068sup1.cif

e-66-o3181-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045988/jj2068Isup2.hkl

e-66-o3181-Isup2.hkl (115.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1 0.86 1.95 2.631 (2) 135
N1—H1B⋯O2i 0.86 2.29 3.109 (2) 158
O2—H2C⋯S1ii 0.82 2.53 3.1533 (18) 134
C1—H1A⋯O2i 0.93 2.51 3.429 (3) 172
C11—H11A⋯O1iii 0.93 2.43 3.262 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010, the Libyan Government for providing a scholarship for AA and J.-C. Daran for his advice.

supplementary crystallographic information

Comment

The title compound, I, is closely related to the previously reported N-benzoyl-N'-(3-hydroxyphenyl)thiourea (II) (Abosadiya et al., 2007) compound. As in most benzoylthiourea derivatives of the type R1C(O)NHC(S)NHR2, the title compound has a syn–anti configuration for the hydroxyphenyl and benzoyl groups with respect to the thiono C=S bond across the thiourea C—N bond (Fig 1). The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable to those in (II). All C—N bond lengths are shorter than the normal value for C—N single bond, and the bond lengths C7—O1 and C8—S1 become longer than normal values for a double bond, which suggests the presence of delocalized π-electrons. For example, the C=S bond (1.671 (2) Å) and C—N bond lengths (C8—N1 = 1.388 (2) Å, C8—N2 = 1.328 (2) Å and C9—N2 = 1.428 (2) Å) in the title compound are longer than that observed in an unsubsituted phenyl ring (III - Yamin et al., 2003) in which the C=S bond length (1.6567 (15) Å) and C—N bond lengths are 1.393 (2), 1.326 (2) and 1.408 (2) Å, respectively. This is due to donating effect of OH group in the para position, which contributes to an increase in the bond length.

The benzoyl ring [C1/C2/C3/C4/C5/C6/C7/O1] (A), hydroxyphenyl ring [N2/C9/C10/C11/C12/C13/C14/O2] (B) and thiourea [(S1/N1/N2/C8/] (C) fragments are essentially planar with maximum deviations from their mean planes of 0.045 (2) Å for atom O1 (A), 0.010 (2) Å for atom C10 (B) and 0.008 (2)Å for atom C8 (C), respectively. The dihedral angle between the mean planes of A and B is 36.77 (8)°. The crytal structure is stabilized by an intramolecular N2—H2B···O1 hydrogen bond which forms a six-membered ring (N2/H2B/O1/C7/N1/C8) commonly observed in this class of ligands. In addition, the molecules are linked by weak intermolecular C11—H···O1, C1—H···O2, O2—H···S1 and N1—H···O2 hydrogen bonds (Table 2), resulting in a one-dimensional chain along the c-axis (Fig 2).

Experimental

The title compound was first synthesized by (Zhang et al., 2001) under the condition of solid-liquid phase transfer catalysis using polyethylene glycol as catalyst, however, a much simpler method was used to synthesize the title compound. The reaction scheme involved a reaction of benzoyl chloride (10 mmol) with ammonium thiocyanate (10 mmol) in dry acetone. The product, benzoyl isothiocyanate was reacted with 4-hydroxy aniline (10 mmol) to give the title compound with a 56% yield. A slow evaporation of ethanolic solution of the compound gave light brawn crystals suitable for X-ray diffraction.

Refinement

All the non hydrogen atom were refined anisotropically. the hydrogen positions were calculated to give an idealized geometry fixed to ride on their respective atoms, with Uiso=1.2Ueq (C) for aromatic (CH = 0.93 Å), Uiso=1.2Ueq (N) for N (NH = 0.86 Å) and Uiso=1.5Ueq (O) for OH (OH = 0.82 Å).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. Dashed lines indicate intramolecular N—H···O hydrogen bonds.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed down the a axis. Dashed lines indicate weak C—H···O, C—H···O, O—H···S and N—H···O hydrogen bonds.

Crystal data

C14H12N2O2S F(000) = 568
Mr = 272.33 Dx = 1.361 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1024 reflections
a = 5.5865 (10) Å θ = 1.9–25.0°
b = 14.451 (2) Å µ = 0.24 mm1
c = 16.462 (3) Å T = 298 K
V = 1329.0 (4) Å3 Block, brown
Z = 4 0.50 × 0.48 × 0.35 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2351 independent reflections
Radiation source: fine-focus sealed tube 2143 reflections with I > 2σ(I)
graphite Rint = 0.018
ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −6→6
Tmin = 0.886, Tmax = 0.919 k = −15→17
7608 measured reflections l = −19→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1346P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2351 reflections Δρmax = 0.13 e Å3
173 parameters Δρmin = −0.14 e Å3
0 restraints Absolute structure: Flack (1983), 958 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.13932 (14) −0.04354 (4) 0.71251 (4) 0.0812 (2)
O1 0.7785 (3) 0.23667 (10) 0.72476 (9) 0.0719 (4)
N1 0.8692 (3) 0.09206 (10) 0.76731 (8) 0.0518 (4)
H1B 0.8429 0.0530 0.8057 0.062*
N2 1.0996 (3) 0.12902 (11) 0.65596 (9) 0.0565 (4)
H2B 1.0469 0.1841 0.6646 0.068*
C1 0.5090 (4) 0.10914 (14) 0.89160 (13) 0.0632 (5)
H1A 0.6077 0.0573 0.8928 0.076*
C2 0.3268 (5) 0.11715 (16) 0.94751 (14) 0.0712 (6)
H2A 0.3032 0.0712 0.9862 0.085*
C3 0.1812 (4) 0.19276 (18) 0.94584 (14) 0.0726 (6)
H3A 0.0581 0.1983 0.9836 0.087*
C4 0.2149 (4) 0.26068 (17) 0.88890 (14) 0.0734 (6)
H4A 0.1140 0.3119 0.8879 0.088*
C5 0.3978 (4) 0.25336 (14) 0.83317 (12) 0.0632 (5)
H5A 0.4208 0.3000 0.7950 0.076*
C6 0.5475 (3) 0.17701 (12) 0.83367 (10) 0.0487 (4)
C7 0.7395 (4) 0.17240 (12) 0.77127 (10) 0.0512 (4)
C8 1.0373 (4) 0.06508 (13) 0.70994 (11) 0.0527 (4)
C9 1.2439 (4) 0.11670 (13) 0.58521 (11) 0.0504 (4)
C10 1.1577 (4) 0.15191 (12) 0.51275 (11) 0.0520 (5)
H10A 1.0118 0.1829 0.5119 0.062*
C11 1.2858 (4) 0.14146 (12) 0.44198 (11) 0.0518 (5)
H11A 1.2257 0.1643 0.3933 0.062*
C12 1.5042 (3) 0.09692 (12) 0.44377 (12) 0.0515 (5)
C13 1.5928 (4) 0.06247 (16) 0.51603 (11) 0.0596 (5)
H13A 1.7399 0.0323 0.5170 0.072*
C14 1.4626 (4) 0.07290 (16) 0.58682 (12) 0.0594 (5)
H14A 1.5229 0.0503 0.6356 0.071*
O2 1.6406 (3) 0.08472 (10) 0.37487 (9) 0.0682 (4)
H2C 1.5717 0.1079 0.3359 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.1110 (5) 0.0497 (3) 0.0828 (4) 0.0182 (3) 0.0277 (4) 0.0010 (3)
O1 0.1018 (11) 0.0536 (8) 0.0603 (8) 0.0184 (8) 0.0223 (8) 0.0179 (6)
N1 0.0712 (10) 0.0432 (8) 0.0410 (7) 0.0061 (8) 0.0053 (7) 0.0030 (6)
N2 0.0712 (10) 0.0480 (8) 0.0504 (8) 0.0014 (8) 0.0101 (8) −0.0027 (7)
C1 0.0732 (14) 0.0513 (11) 0.0649 (12) 0.0051 (10) 0.0142 (10) 0.0055 (9)
C2 0.0783 (15) 0.0630 (13) 0.0723 (13) −0.0108 (12) 0.0191 (12) 0.0028 (11)
C3 0.0575 (13) 0.0890 (17) 0.0713 (13) −0.0058 (12) 0.0105 (11) −0.0166 (13)
C4 0.0649 (14) 0.0824 (16) 0.0728 (14) 0.0219 (12) 0.0005 (12) −0.0090 (12)
C5 0.0755 (14) 0.0596 (12) 0.0546 (11) 0.0119 (11) −0.0026 (11) 0.0023 (9)
C6 0.0573 (11) 0.0472 (10) 0.0416 (8) 0.0009 (8) −0.0045 (8) −0.0040 (7)
C7 0.0669 (11) 0.0461 (10) 0.0406 (9) 0.0026 (9) −0.0032 (8) 0.0018 (7)
C8 0.0627 (11) 0.0508 (10) 0.0446 (9) −0.0008 (8) −0.0022 (8) −0.0056 (8)
C9 0.0560 (11) 0.0481 (9) 0.0471 (9) −0.0079 (9) 0.0045 (8) −0.0071 (8)
C10 0.0548 (11) 0.0411 (9) 0.0600 (11) 0.0009 (9) 0.0083 (9) 0.0050 (8)
C11 0.0618 (12) 0.0426 (10) 0.0509 (10) −0.0032 (8) 0.0049 (9) 0.0051 (8)
C12 0.0543 (11) 0.0470 (10) 0.0531 (10) −0.0119 (9) 0.0061 (8) −0.0105 (8)
C13 0.0464 (10) 0.0724 (13) 0.0602 (11) −0.0001 (10) −0.0044 (9) −0.0115 (10)
C14 0.0522 (11) 0.0780 (13) 0.0480 (10) −0.0026 (10) −0.0083 (8) −0.0081 (9)
O2 0.0727 (10) 0.0735 (9) 0.0583 (8) 0.0002 (8) 0.0169 (7) −0.0080 (7)

Geometric parameters (Å, °)

S1—C8 1.670 (2) C4—H4A 0.9300
O1—C7 1.223 (2) C5—C6 1.385 (3)
N1—C7 1.370 (2) C5—H5A 0.9300
N1—C8 1.388 (2) C6—C7 1.486 (3)
N1—H1B 0.8600 C9—C14 1.376 (3)
N2—C8 1.328 (2) C9—C10 1.384 (3)
N2—C9 1.428 (2) C10—C11 1.376 (3)
N2—H2B 0.8600 C10—H10A 0.9300
C1—C2 1.377 (3) C11—C12 1.379 (3)
C1—C6 1.385 (3) C11—H11A 0.9300
C1—H1A 0.9300 C12—O2 1.378 (2)
C2—C3 1.362 (3) C12—C13 1.381 (3)
C2—H2A 0.9300 C13—C14 1.382 (3)
C3—C4 1.370 (3) C13—H13A 0.9300
C3—H3A 0.9300 C14—H14A 0.9300
C4—C5 1.377 (3) O2—H2C 0.8200
C7—N1—C8 128.94 (15) O1—C7—C6 121.81 (17)
C7—N1—H1B 115.5 N1—C7—C6 116.91 (15)
C8—N1—H1B 115.5 N2—C8—N1 115.91 (16)
C8—N2—C9 127.36 (16) N2—C8—S1 125.54 (15)
C8—N2—H2B 116.3 N1—C8—S1 118.53 (13)
C9—N2—H2B 116.3 C14—C9—C10 119.66 (17)
C2—C1—C6 121.0 (2) C14—C9—N2 122.90 (17)
C2—C1—H1A 119.5 C10—C9—N2 117.43 (17)
C6—C1—H1A 119.5 C11—C10—C9 120.56 (18)
C3—C2—C1 119.7 (2) C11—C10—H10A 119.7
C3—C2—H2A 120.2 C9—C10—H10A 119.7
C1—C2—H2A 120.2 C10—C11—C12 119.57 (18)
C2—C3—C4 120.4 (2) C10—C11—H11A 120.2
C2—C3—H3A 119.8 C12—C11—H11A 120.2
C4—C3—H3A 119.8 O2—C12—C11 122.08 (18)
C3—C4—C5 120.2 (2) O2—C12—C13 117.68 (18)
C3—C4—H4A 119.9 C11—C12—C13 120.24 (18)
C5—C4—H4A 119.9 C12—C13—C14 119.87 (19)
C4—C5—C6 120.4 (2) C12—C13—H13A 120.1
C4—C5—H5A 119.8 C14—C13—H13A 120.1
C6—C5—H5A 119.8 C9—C14—C13 120.08 (19)
C1—C6—C5 118.32 (18) C9—C14—H14A 120.0
C1—C6—C7 123.80 (17) C13—C14—H14A 120.0
C5—C6—C7 117.87 (17) C12—O2—H2C 109.5
O1—C7—N1 121.28 (18)
C6—C1—C2—C3 0.2 (3) C9—N2—C8—S1 7.0 (3)
C1—C2—C3—C4 0.1 (4) C7—N1—C8—N2 7.5 (3)
C2—C3—C4—C5 −0.5 (4) C7—N1—C8—S1 −171.15 (16)
C3—C4—C5—C6 0.6 (3) C8—N2—C9—C14 −49.9 (3)
C2—C1—C6—C5 −0.1 (3) C8—N2—C9—C10 130.9 (2)
C2—C1—C6—C7 −179.5 (2) C14—C9—C10—C11 1.6 (3)
C4—C5—C6—C1 −0.3 (3) N2—C9—C10—C11 −179.13 (16)
C4—C5—C6—C7 179.15 (19) C9—C10—C11—C12 −1.2 (3)
C8—N1—C7—O1 −7.2 (3) C10—C11—C12—O2 −179.80 (17)
C8—N1—C7—C6 171.87 (17) C10—C11—C12—C13 0.4 (3)
C1—C6—C7—O1 −174.8 (2) O2—C12—C13—C14 −179.95 (18)
C5—C6—C7—O1 5.8 (3) C11—C12—C13—C14 −0.2 (3)
C1—C6—C7—N1 6.1 (3) C10—C9—C14—C13 −1.4 (3)
C5—C6—C7—N1 −173.29 (17) N2—C9—C14—C13 179.44 (19)
C9—N2—C8—N1 −171.58 (17) C12—C13—C14—C9 0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O1 0.86 1.95 2.631 (2) 135
N1—H1B···O2i 0.86 2.29 3.109 (2) 158
O2—H2C···S1ii 0.82 2.53 3.1533 (18) 134
C1—H1A···O2i 0.93 2.51 3.429 (3) 172
C11—H11A···O1iii 0.93 2.43 3.262 (2) 149

Symmetry codes: (i) −x+5/2, −y, z+1/2; (ii) −x+5/2, −y, z−1/2; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2068).

References

  1. Abosadiya, H. M., Yamin, B. M. & Ngah, N. (2007). Acta Cryst. E63, o2403–o2404.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314. [DOI] [PMC free article] [PubMed]
  6. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o340–o341.
  10. Zhang, Y.-M., Wei, T.-B. & Gao, L.-M. (2001). Synth. Commun.31 3099–3105.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045988/jj2068sup1.cif

e-66-o3181-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045988/jj2068Isup2.hkl

e-66-o3181-Isup2.hkl (115.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES