Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):o3112–o3113. doi: 10.1107/S1600536810044855

(6S,7S,8S,8aS)-6-Ethyl-7,8-dihy­droxy-1,5,6,7,8,8a-hexa­hydro­indolizin-3(2H)-one monohydrate

Viktor Vrábel a,*, Ľubomír Švorc a, Peter Šafář b, Jozefína Žúžiová b
PMCID: PMC3011597  PMID: 21589417

Abstract

The absolute configuration of the title compound, C10H17NO3·H2O, was assigned from the synthesis. In the mol­ecular structure, the central six-membered ring of the indolizine moiety adopts a chair conformation, with two atoms displaced by −0.578 (2) and 0.651 (1) Å from the plane of the other four atoms [maximum deviation 0.019 (2) Å] The conformation of the fused oxopyrrolidine ring is close to that of a flat envelope, with the flap atom displaced by 0.294 (1) Å from the plane through the remaining four atoms. In the crystal, one of the hy­droxy groups is hydrogen-bonded to two water mol­ecules, while the other hy­droxy group exhibits an inter­molecular hydrogen bond to the carbonyl O atom, resulting in a chain parallel to the b axis.

Related literature

For the uses of indolizine-based mol­ecules, see: Weidner et al. (1989); Jaung & Jung (2003); Rotaru et al. (2005); Saeva & Luss (1988); Kelin et al. (2001). For biological activities of indolizines, see: Oslund et al. (2008); Asano et al. (2000); Tielmann & Hoenke (2006). For synthesis, see: Šafař et al. (2010). For ring-puckering and conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). graphic file with name e-66-o3112-scheme1.jpg

Experimental

Crystal data

  • C10H17NO3·H2O

  • M r = 217.26

  • Orthorhombic, Inline graphic

  • a = 7.1398 (3) Å

  • b = 7.3169 (2) Å

  • c = 20.8466 (9) Å

  • V = 1089.05 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.55 × 0.25 × 0.09 mm

Data collection

  • Oxford Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995) T min = 0.945, T max = 0.991

  • 17428 measured reflections

  • 1308 independent reflections

  • 1161 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.081

  • S = 1.06

  • 1308 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044855/fj2360sup1.cif

e-66-o3112-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044855/fj2360Isup2.hkl

e-66-o3112-Isup2.hkl (64.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22A⋯O21i 0.82 (3) 1.94 (3) 2.7505 (19) 173 (3)
O24—H24A⋯O22ii 0.91 (3) 2.07 (3) 2.919 (2) 155 (2)
O24—H24B⋯O23iii 0.78 (3) 2.14 (3) 2.907 (2) 167 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic (grant No. 1/0161/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. We also thank the Development Agency for support under contract No. APVV-0210-07.

supplementary crystallographic information

Comment

Indolizines based molecules are known for their use as synthetic dyes (Weidner et al., 1989; Jaung & Jung, 2003), fluorescent materials (Rotaru et al., 2005; Saeva & Luss, 1988) and also as key intermediates for the synthesis of indolizine based molecules (Kelin et al., 2001). Indolizines both synthetic and natural have also been ascribed with a number of useful biological activities (Oslund et al., 2008; Asano et al., 2000; Tielmann & Hoenke, 2006) such as antibacterial, antiviral, CNS depressants, anti-HIV, anti-cancer and have been used for treating cardiovascular ailments.

Due to the diverse properties of indolizine derivatives, the structure of the title compound, (I), has been determined as part of our study of the conformational changes caused by different substituents at various positions on the indolizine ring system. The absolute configuration was established by synthesis and is depicted in the scheme and figure. The expected stereochemistry of atoms C5, C6, C7 and C8 was confirmed as S, S, S and S, respectively (Fig. 1). The central six-membered ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C5, C6, C8 and C9 are coplanar to within 0.019 (2) Å, while atoms N1 and C7 are displaced from this plane on opposite sides, with out-of-plane displacements of -0.578 (2) and 0.651 (1) Å, respectively. The oxopyrrolidine ring attached to the indolizine ring system has flat-envelope conformation with atom C4 on the flap (Nardelli, 1983). The deviation of atom C4 from the mean plane of the remaining four atoms N1/C2/C3/C5 is 0.294 (1) Å. The N1—C5 and N1—C9 bonds are approximately equivalent and both are much longer than the N1—C2 bond. Atom N1 is sp2-hybridized, as evidenced by the sum of the valence angles around it (358.4 (2)°). These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl C2═O21. The H atoms (H24A and H24B) of the water molecule form O—H···O intermolecular hydrogen bonds with the O atoms (O22 and O23) of both present hydroxy groups, which may, in part, influence the molecular configuration. There have been observed also another intermolecular O—H···O hydrogen bonds, in which carbonyl oxygen O21 participates as acceptor and atom O22 as donator (Table 1). All the interactions demonstrated were found by PLATON (Spek, 2009).

Experimental

The title compound 6S,7S,8S,8aS)-6-ethyl-7,8-dihydroxyhexahydroindolizin-3(2H)-one monohydrate was prepared according literature procedures of Šafař et al. (2010).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and O—H distance 0.85 Å and Uiso set at 1.2Ueq of the parent atom. The absolute configuration could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis; 907 total Friedel pairs have been merged. Due to the absence of anomalous dispersion the Flack parameter was not refined

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).

Fig. 2.

Fig. 2.

A packing of the molecule of (I), viewed along the b axis.

Crystal data

C10H17NO3·H2O F(000) = 472
Mr = 217.26 Dx = 1.325 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 10421 reflections
a = 7.1398 (3) Å θ = 3.4–29.5°
b = 7.3169 (2) Å µ = 0.10 mm1
c = 20.8466 (9) Å T = 298 K
V = 1089.05 (7) Å3 Prism, colourless
Z = 4 0.55 × 0.25 × 0.09 mm

Data collection

Oxford Gemini R CCD diffractometer 1308 independent reflections
Radiation source: fine-focus sealed tube 1161 reflections with I > 2σ(I)
graphite Rint = 0.028
Detector resolution: 10.4340 pixels mm-1 θmax = 26.4°, θmin = 4.1°
Rotation method data acquisition using ω and φ scans h = −8→8
Absorption correction: analytical (Clark & Reid, 1995) k = −9→9
Tmin = 0.945, Tmax = 0.991 l = −26→26
17428 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0923P] where P = (Fo2 + 2Fc2)/3
1308 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Experimental. face-indexed (Oxford Diffraction, 2006)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.7971 (2) 0.5950 (2) 0.21098 (8) 0.0301 (4)
C3 0.7338 (3) 0.7182 (2) 0.26470 (8) 0.0347 (4)
H3B 0.8405 0.7649 0.2884 0.042*
H3A 0.6524 0.6529 0.2941 0.042*
C4 0.6288 (3) 0.8728 (3) 0.23202 (9) 0.0454 (5)
H4B 0.6617 0.9895 0.2510 0.054*
H4A 0.4946 0.8553 0.2358 0.054*
C5 0.6903 (2) 0.8652 (2) 0.16126 (8) 0.0314 (4)
H5A 0.5790 0.8736 0.1339 0.038*
C6 0.8300 (3) 1.0102 (2) 0.14059 (8) 0.0331 (4)
H6A 0.9284 1.0227 0.1731 0.040*
C7 0.9168 (3) 0.9620 (2) 0.07610 (9) 0.0359 (4)
H7A 0.8175 0.9664 0.0437 0.043*
C8 1.0011 (2) 0.7695 (3) 0.07524 (8) 0.0341 (4)
H8A 1.0387 0.7430 0.0310 0.041*
C9 0.8502 (3) 0.6316 (2) 0.09368 (8) 0.0339 (4)
H9B 0.7529 0.6298 0.0612 0.041*
H9A 0.9043 0.5102 0.0963 0.041*
C10 1.1765 (3) 0.7517 (3) 0.11756 (10) 0.0399 (4)
H10B 1.2577 0.8557 0.1098 0.048*
H10A 1.1390 0.7552 0.1623 0.048*
C11 1.2854 (3) 0.5778 (3) 0.10545 (10) 0.0514 (5)
H11C 1.3930 0.5743 0.1331 0.062*
H11B 1.3255 0.5745 0.0615 0.062*
H11A 1.2070 0.4741 0.1141 0.062*
N1 0.7703 (2) 0.68207 (18) 0.15522 (7) 0.0292 (3)
O21 0.8643 (2) 0.44131 (16) 0.21682 (6) 0.0420 (3)
O22 0.7283 (2) 1.17774 (17) 0.13508 (8) 0.0473 (4)
H22A 0.776 (4) 1.257 (4) 0.1571 (12) 0.057*
O23 1.0557 (2) 1.0928 (2) 0.05882 (8) 0.0565 (4)
H23A 1.015 (4) 1.177 (4) 0.0304 (13) 0.068*
O24 0.9507 (2) 1.3468 (3) −0.03262 (8) 0.0559 (4)
H24A 1.013 (4) 1.312 (4) −0.0684 (13) 0.067*
H24B 0.851 (4) 1.369 (4) −0.0451 (13) 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0274 (8) 0.0256 (8) 0.0373 (9) −0.0042 (7) −0.0022 (7) −0.0007 (7)
C3 0.0365 (9) 0.0329 (8) 0.0346 (9) −0.0024 (8) 0.0014 (7) −0.0006 (7)
C4 0.0523 (11) 0.0395 (10) 0.0444 (11) 0.0134 (10) 0.0139 (9) 0.0010 (9)
C5 0.0312 (8) 0.0270 (8) 0.0359 (9) 0.0044 (7) −0.0026 (7) −0.0004 (7)
C6 0.0355 (9) 0.0251 (8) 0.0387 (9) −0.0008 (8) −0.0106 (7) 0.0016 (7)
C7 0.0325 (9) 0.0376 (9) 0.0375 (9) −0.0057 (8) −0.0061 (8) 0.0108 (8)
C8 0.0354 (9) 0.0404 (9) 0.0265 (8) −0.0020 (8) 0.0011 (7) 0.0010 (7)
C9 0.0378 (9) 0.0327 (9) 0.0312 (9) −0.0021 (8) 0.0004 (7) −0.0064 (7)
C10 0.0323 (9) 0.0396 (10) 0.0478 (11) −0.0019 (9) −0.0005 (8) 0.0035 (9)
C11 0.0504 (12) 0.0576 (13) 0.0462 (12) 0.0150 (11) −0.0002 (10) 0.0036 (10)
N1 0.0316 (7) 0.0230 (6) 0.0330 (7) 0.0003 (6) 0.0019 (6) −0.0007 (6)
O21 0.0514 (8) 0.0282 (6) 0.0465 (7) 0.0091 (6) −0.0047 (7) 0.0021 (6)
O22 0.0560 (9) 0.0234 (6) 0.0624 (9) 0.0034 (7) −0.0181 (7) −0.0010 (6)
O23 0.0418 (8) 0.0553 (9) 0.0726 (10) −0.0098 (8) −0.0016 (7) 0.0328 (8)
O24 0.0482 (9) 0.0650 (10) 0.0546 (9) 0.0009 (9) 0.0021 (7) 0.0157 (8)

Geometric parameters (Å, °)

C2—O21 1.228 (2) C7—H7A 0.9800
C2—N1 1.339 (2) C8—C9 1.525 (2)
C2—C3 1.507 (2) C8—C10 1.538 (3)
C3—C4 1.518 (3) C8—H8A 0.9800
C3—H3B 0.9700 C9—N1 1.452 (2)
C3—H3A 0.9700 C9—H9B 0.9700
C4—C5 1.540 (2) C9—H9A 0.9700
C4—H4B 0.9700 C10—C11 1.513 (3)
C4—H4A 0.9700 C10—H10B 0.9700
C5—N1 1.462 (2) C10—H10A 0.9700
C5—C6 1.519 (2) C11—H11C 0.9600
C5—H5A 0.9800 C11—H11B 0.9600
C6—O22 1.429 (2) C11—H11A 0.9600
C6—C7 1.522 (3) O22—H22A 0.82 (3)
C6—H6A 0.9800 O23—H23A 0.90 (3)
C7—O23 1.425 (2) O24—H24A 0.91 (3)
C7—C8 1.532 (3) O24—H24B 0.78 (3)
O21—C2—N1 125.27 (16) C8—C7—H7A 107.9
O21—C2—C3 126.23 (16) C9—C8—C7 109.13 (14)
N1—C2—C3 108.50 (14) C9—C8—C10 112.01 (14)
C2—C3—C4 105.09 (15) C7—C8—C10 113.01 (15)
C2—C3—H3B 110.7 C9—C8—H8A 107.5
C4—C3—H3B 110.7 C7—C8—H8A 107.5
C2—C3—H3A 110.7 C10—C8—H8A 107.5
C4—C3—H3A 110.7 N1—C9—C8 109.40 (14)
H3B—C3—H3A 108.8 N1—C9—H9B 109.8
C3—C4—C5 105.20 (14) C8—C9—H9B 109.8
C3—C4—H4B 110.7 N1—C9—H9A 109.8
C5—C4—H4B 110.7 C8—C9—H9A 109.8
C3—C4—H4A 110.7 H9B—C9—H9A 108.2
C5—C4—H4A 110.7 C11—C10—C8 113.21 (17)
H4B—C4—H4A 108.8 C11—C10—H10B 108.9
N1—C5—C6 111.06 (13) C8—C10—H10B 108.9
N1—C5—C4 103.10 (13) C11—C10—H10A 108.9
C6—C5—C4 115.70 (15) C8—C10—H10A 108.9
N1—C5—H5A 108.9 H10B—C10—H10A 107.7
C6—C5—H5A 108.9 C10—C11—H11C 109.5
C4—C5—H5A 108.9 C10—C11—H11B 109.5
O22—C6—C5 106.74 (14) H11C—C11—H11B 109.5
O22—C6—C7 109.57 (15) C10—C11—H11A 109.5
C5—C6—C7 110.85 (14) H11C—C11—H11A 109.5
O22—C6—H6A 109.9 H11B—C11—H11A 109.5
C5—C6—H6A 109.9 C2—N1—C9 126.13 (14)
C7—C6—H6A 109.9 C2—N1—C5 114.67 (13)
O23—C7—C6 110.54 (16) C9—N1—C5 117.56 (13)
O23—C7—C8 109.97 (14) C6—O22—H22A 110.7 (18)
C6—C7—C8 112.57 (14) C7—O23—H23A 113.7 (16)
O23—C7—H7A 107.9 H24A—O24—H24B 104 (3)
C6—C7—H7A 107.9
O21—C2—C3—C4 −169.29 (17) C6—C7—C8—C10 −68.92 (19)
N1—C2—C3—C4 11.57 (19) C7—C8—C9—N1 −55.28 (18)
C2—C3—C4—C5 −17.83 (19) C10—C8—C9—N1 70.64 (19)
C3—C4—C5—N1 17.48 (19) C9—C8—C10—C11 69.5 (2)
C3—C4—C5—C6 −103.96 (16) C7—C8—C10—C11 −166.77 (16)
N1—C5—C6—O22 167.96 (14) O21—C2—N1—C9 −14.3 (3)
C4—C5—C6—O22 −74.98 (18) C3—C2—N1—C9 164.90 (15)
N1—C5—C6—C7 48.69 (18) O21—C2—N1—C5 −179.17 (16)
C4—C5—C6—C7 165.76 (15) C3—C2—N1—C5 −0.02 (19)
O22—C6—C7—O23 65.90 (18) C8—C9—N1—C2 −108.10 (19)
C5—C6—C7—O23 −176.56 (14) C8—C9—N1—C5 56.43 (19)
O22—C6—C7—C8 −170.69 (13) C6—C5—N1—C2 113.25 (16)
C5—C6—C7—C8 −53.14 (19) C4—C5—N1—C2 −11.28 (19)
O23—C7—C8—C9 −179.85 (15) C6—C5—N1—C9 −53.04 (19)
C6—C7—C8—C9 56.42 (18) C4—C5—N1—C9 −177.56 (15)
O23—C7—C8—C10 54.81 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O22—H22A···O21i 0.82 (3) 1.94 (3) 2.7505 (19) 173 (3)
O24—H24A···O22ii 0.91 (3) 2.07 (3) 2.919 (2) 155 (2)
O24—H24B···O23iii 0.78 (3) 2.14 (3) 2.907 (2) 167 (3)

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+5/2, −z; (iii) x−1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2360).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  3. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1362.
  6. Jaung, J. Y. & Jung, Y. S. (2003). Bull. Korean Chem. Soc.24, 1565–1566.
  7. Kelin, A. V., Sromek, A. W. & Gevorgyan, V. (2001). J. Am. Chem. Soc.123, 2074–2075. [DOI] [PubMed]
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Oslund, R. C., Cermak, N. & Gelb, M. H. (2008). J. Med. Chem.51, 4708–4714. [DOI] [PMC free article] [PubMed]
  10. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  11. Rotaru, A. V., Druta, I. D., Oeser, T. & Muller, T. J. J. (2005). Helv. Chim. Acta, 88, 1798–1812.
  12. Saeva, F. D. & Luss, H. R. (1988). J. Org. Chem.53, 1804–1806.
  13. Šafař, P., Žúžiová, J., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Comesse, S. & Daich, A. (2010). Tetrahedron Asymmetry, 21, 623–630.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tielmann, P. & Hoenke, C. (2006). Tetrahedron Lett.47, 261–265.
  17. Weidner, C. H., Wadsworth, D. H., Bender, S. L. & Beltman, D. J. (1989). J. Org. Chem.54, 3660–3664.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044855/fj2360sup1.cif

e-66-o3112-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044855/fj2360Isup2.hkl

e-66-o3112-Isup2.hkl (64.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES