Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 6;66(Pt 12):o3101. doi: 10.1107/S1600536810045034

2,4-Dinitro-1-naphthol

Abdul Rauf Raza a, Aeysha Sultan a, M Nawaz Tahir b,*, Amra Rubab a
PMCID: PMC3011602  PMID: 21589407

Abstract

In the title compound, C10H6N2O5, the two fused rings are almost co-planar, with an r.m.s. deviation of 0.0163 Å. The nitro groups are oriented at dihedral angles of 2.62 (11) and 44.69 (11)° with respect to the plane of the parent fused rings. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds complete S(6) ring motifs. In the crystal, mol­ecules are linked into chains along [101] by inter­molecular O—H⋯O hydrogen bonds. π–π inter­actions [centroid–centroid distances = 3.6296 (15), 3.8104 (15) and 3.6513 (14) Å] might play a role in stabilizing the structure.

Related literature

For background to estrogens, see: Schwartz et al. (1995); O’Donnell et al. (2001). For related structures, see: Filipenko et al. (2001); Rozycka-Sokolowska et al. (2004). For graph-set notation, see: Bernstein et al. (1995). For π–π inter­actions, see: Janiak (2000).graphic file with name e-66-o3101-scheme1.jpg

Experimental

Crystal data

  • C10H6N2O5

  • M r = 234.17

  • Monoclinic, Inline graphic

  • a = 7.0512 (10) Å

  • b = 16.3541 (19) Å

  • c = 8.7988 (10) Å

  • β = 111.452 (6)°

  • V = 944.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.978, T max = 0.982

  • 6868 measured reflections

  • 1684 independent reflections

  • 1058 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.00

  • 1684 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045034/dn2615sup1.cif

e-66-o3101-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045034/dn2615Isup2.hkl

e-66-o3101-Isup2.hkl (81.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.82 2.53 3.006 (3) 118
O5—H5A⋯O4 0.82 1.87 2.573 (2) 142
O5—H5A⋯N2 0.82 2.47 2.892 (3) 113
C5—H5⋯O1 0.93 2.35 2.902 (3) 118

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of the research project (20–819).

supplementary crystallographic information

Comment

Estrogens have been found to have maintenance effects on bone, brain, skin, cardiovascular system (Schwartz et al., 1995). In spite of their beneficial biological effects, estrogens are suspected to have relationship with the risk of cancer and thromboemetic diseases (O'Donnell et al., 2001). The title compound was obtained as an interesting side product while synthesizing substituted 1-tetralone as AB ring of the estrogen skeleton which will bear substituent at positions not found in nature.

The title compound (I) is related to the published crystal structures of 1-naphthalenol (Rozycka-Sokolowska et al., 2004) and hydroxonium 2,4-dinitro-1-hydroxy-7-sulfonatonaphthalene monohydrate (Filipenko et al., 2001).

In (I), the two fused rings (C1—C10) are neraly planar with the largest deviation being 0.033 (2)Å at C10 (Fig. 1). The hydroxyl O5 atom is only deviating by 0.129 (2)Å from the mean plane. Owing to the intramolecular O5–H···O4 hydrogen bond (Table 1), the O3 and O4 atoms are only slightly displaced from the mean plane of the fused rings by -0.074 (2)Å and 0.023 (2) Å, respectively. The other nitro group is twisted by 44.72 (12)° with respect to the fused rings.

Strong intramolecular H-bondings of O—H···O and C—H···O types (Table 1, Fig. 1) complete S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric chains due to intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2). Slippest weak π–π interactions (Table 2) might play a role in stabilizing the packing.

Experimental

The 1-tetralone (1 ml, 1.1 g, 1 eq) was added to a chilled and well stirred nitrating mixture containing H2SO4 (2 ml, 0.57 g, 2 eq) and HNO3 (0.5 ml, 0.7 g, 1.5 eq). The reaction mixture was then neutralized and extracted with EtOAc (3 × 25 ml) and the combined organic extract was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography and the title compound (I) was obtained as dull brown crystalline solid in 61–79th fraction (20 ml each) using 2.5% CHCl3 (3 × 500 ml) as mobile phase. Yield: 15%.

Refinement

The H-atoms were positioned geometrically with (O–H = 0.82, C–H = 0.93 Å) and treated as riding with Uiso(H) = 1.2Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bond.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains.

Crystal data

C10H6N2O5 F(000) = 480
Mr = 234.17 Dx = 1.647 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1058 reflections
a = 7.0512 (10) Å θ = 2.5–25.1°
b = 16.3541 (19) Å µ = 0.14 mm1
c = 8.7988 (10) Å T = 296 K
β = 111.452 (6)° Needle, brown
V = 944.4 (2) Å3 0.32 × 0.14 × 0.12 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1684 independent reflections
Radiation source: fine-focus sealed tube 1058 reflections with I > 2σ(I)
graphite Rint = 0.052
Detector resolution: 8.20 pixels mm-1 θmax = 25.1°, θmin = 2.5°
ω scans h = −7→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −19→19
Tmin = 0.978, Tmax = 0.982 l = −10→10
6868 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3
1684 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3884 (3) 0.45828 (13) 0.10925 (19) 0.0656 (6)
O2 0.6120 (3) 0.36519 (11) 0.1294 (2) 0.0663 (6)
O3 0.8511 (3) 0.26242 (11) 0.6881 (2) 0.0762 (7)
O4 1.0038 (3) 0.34485 (11) 0.8845 (2) 0.0735 (6)
O5 0.9984 (3) 0.49989 (10) 0.83341 (16) 0.0500 (5)
H5A 1.0356 0.4587 0.8896 0.060*
N1 0.5444 (3) 0.42063 (12) 0.1860 (2) 0.0441 (5)
N2 0.8995 (3) 0.33110 (13) 0.7401 (3) 0.0497 (6)
C1 0.8052 (3) 0.54453 (12) 0.5693 (2) 0.0313 (5)
C2 0.8467 (4) 0.62585 (14) 0.6216 (3) 0.0415 (6)
H2 0.9197 0.6370 0.7312 0.050*
C3 0.7809 (4) 0.68880 (14) 0.5131 (3) 0.0465 (7)
H3 0.8077 0.7426 0.5489 0.056*
C4 0.6744 (4) 0.67246 (15) 0.3500 (3) 0.0487 (7)
H4 0.6329 0.7157 0.2766 0.058*
C5 0.6283 (4) 0.59409 (15) 0.2936 (3) 0.0419 (6)
H5 0.5557 0.5848 0.1832 0.050*
C6 0.6905 (3) 0.52753 (13) 0.4024 (2) 0.0313 (5)
C7 0.6553 (3) 0.44389 (13) 0.3569 (2) 0.0334 (5)
C8 0.7224 (3) 0.38182 (13) 0.4646 (2) 0.0373 (6)
H8 0.6948 0.3279 0.4299 0.045*
C9 0.8335 (3) 0.39941 (13) 0.6284 (2) 0.0354 (6)
C10 0.8816 (3) 0.47868 (13) 0.6824 (2) 0.0345 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0468 (12) 0.0892 (14) 0.0412 (10) 0.0043 (11) −0.0071 (9) −0.0067 (9)
O2 0.0875 (16) 0.0570 (12) 0.0489 (11) 0.0026 (11) 0.0184 (10) −0.0192 (9)
O3 0.110 (2) 0.0391 (11) 0.0731 (13) −0.0007 (11) 0.0256 (12) 0.0117 (9)
O4 0.0881 (16) 0.0695 (13) 0.0441 (11) −0.0059 (11) 0.0017 (11) 0.0225 (9)
O5 0.0560 (12) 0.0565 (10) 0.0260 (9) −0.0001 (9) 0.0012 (8) 0.0046 (7)
N1 0.0459 (14) 0.0488 (12) 0.0320 (11) −0.0085 (11) 0.0075 (10) −0.0052 (9)
N2 0.0521 (15) 0.0483 (14) 0.0490 (13) 0.0019 (11) 0.0190 (11) 0.0158 (10)
C1 0.0258 (13) 0.0386 (12) 0.0291 (11) 0.0020 (10) 0.0096 (9) −0.0002 (9)
C2 0.0405 (15) 0.0446 (14) 0.0385 (13) −0.0023 (11) 0.0132 (11) −0.0055 (11)
C3 0.0493 (17) 0.0376 (14) 0.0519 (15) 0.0043 (12) 0.0175 (13) 0.0013 (11)
C4 0.0490 (17) 0.0448 (15) 0.0489 (15) 0.0094 (12) 0.0139 (13) 0.0142 (12)
C5 0.0368 (15) 0.0526 (15) 0.0317 (12) 0.0054 (12) 0.0070 (10) 0.0065 (11)
C6 0.0235 (12) 0.0401 (12) 0.0298 (11) 0.0026 (10) 0.0093 (9) 0.0016 (9)
C7 0.0267 (13) 0.0435 (13) 0.0272 (11) −0.0026 (10) 0.0066 (9) −0.0030 (10)
C8 0.0347 (14) 0.0384 (13) 0.0388 (13) −0.0021 (11) 0.0137 (11) −0.0017 (10)
C9 0.0337 (14) 0.0404 (13) 0.0321 (12) 0.0021 (10) 0.0120 (10) 0.0083 (10)
C10 0.0307 (13) 0.0474 (14) 0.0247 (11) 0.0008 (11) 0.0093 (10) 0.0021 (10)

Geometric parameters (Å, °)

O1—N1 1.225 (2) C2—H2 0.9300
O2—N1 1.213 (2) C3—C4 1.381 (3)
O3—N2 1.214 (3) C3—H3 0.9300
O4—N2 1.234 (3) C4—C5 1.370 (3)
O5—C10 1.328 (2) C4—H4 0.9300
O5—H5A 0.8200 C5—C6 1.409 (3)
N1—C7 1.469 (3) C5—H5 0.9300
N2—C9 1.448 (3) C6—C7 1.421 (3)
C1—C2 1.403 (3) C7—C8 1.351 (3)
C1—C6 1.421 (3) C8—C9 1.395 (3)
C1—C10 1.431 (3) C8—H8 0.9300
C2—C3 1.365 (3) C9—C10 1.380 (3)
C10—O5—H5A 109.5 C4—C5—C6 120.2 (2)
O2—N1—O1 123.9 (2) C4—C5—H5 119.9
O2—N1—C7 118.2 (2) C6—C5—H5 119.9
O1—N1—C7 117.9 (2) C5—C6—C7 124.98 (19)
O3—N2—O4 122.4 (2) C5—C6—C1 118.0 (2)
O3—N2—C9 118.8 (2) C7—C6—C1 117.00 (19)
O4—N2—C9 118.8 (2) C8—C7—C6 123.06 (19)
C2—C1—C6 119.75 (19) C8—C7—N1 116.25 (19)
C2—C1—C10 120.33 (19) C6—C7—N1 120.68 (18)
C6—C1—C10 119.90 (19) C7—C8—C9 119.3 (2)
C3—C2—C1 120.6 (2) C7—C8—H8 120.3
C3—C2—H2 119.7 C9—C8—H8 120.3
C1—C2—H2 119.7 C10—C9—C8 121.60 (19)
C2—C3—C4 119.8 (2) C10—C9—N2 120.89 (19)
C2—C3—H3 120.1 C8—C9—N2 117.5 (2)
C4—C3—H3 120.1 O5—C10—C9 125.07 (19)
C5—C4—C3 121.6 (2) O5—C10—C1 115.92 (19)
C5—C4—H4 119.2 C9—C10—C1 119.00 (18)
C3—C4—H4 119.2
C6—C1—C2—C3 −1.1 (3) O1—N1—C7—C6 −44.9 (3)
C10—C1—C2—C3 177.5 (2) C6—C7—C8—C9 −0.7 (3)
C1—C2—C3—C4 −0.7 (4) N1—C7—C8—C9 178.4 (2)
C2—C3—C4—C5 1.5 (4) C7—C8—C9—C10 −1.9 (3)
C3—C4—C5—C6 −0.4 (4) C7—C8—C9—N2 179.0 (2)
C4—C5—C6—C7 −178.5 (2) O3—N2—C9—C10 178.8 (2)
C4—C5—C6—C1 −1.4 (3) O4—N2—C9—C10 −1.5 (3)
C2—C1—C6—C5 2.1 (3) O3—N2—C9—C8 −2.1 (3)
C10—C1—C6—C5 −176.42 (19) O4—N2—C9—C8 177.6 (2)
C2—C1—C6—C7 179.44 (19) C8—C9—C10—O5 −175.0 (2)
C10—C1—C6—C7 0.9 (3) N2—C9—C10—O5 4.1 (3)
C5—C6—C7—C8 178.2 (2) C8—C9—C10—C1 3.8 (3)
C1—C6—C7—C8 1.1 (3) N2—C9—C10—C1 −177.11 (19)
C5—C6—C7—N1 −0.8 (3) C2—C1—C10—O5 −2.9 (3)
C1—C6—C7—N1 −177.9 (2) C6—C1—C10—O5 175.7 (2)
O2—N1—C7—C8 −43.7 (3) C2—C1—C10—C9 178.2 (2)
O1—N1—C7—C8 136.1 (2) C6—C1—C10—C9 −3.2 (3)
O2—N1—C7—C6 135.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O1i 0.82 2.53 3.006 (3) 118
O5—H5A···O4 0.82 1.87 2.573 (2) 142
O5—H5A···N2 0.82 2.47 2.892 (3) 113
C5—H5···O1 0.93 2.35 2.902 (3) 118

Symmetry codes: (i) x+1, y, z+1.

Table 2 π–π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C10 rings, respectively. ipd is the mean interplanar distance (distance from one plane to the neighbouring centroid) and sa is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000)

Cg···Cg ipd sa
Cg1···Cg2i 3.6296 (15) 3.365 1.305
Cg1···Cg2ii 3.8104 (15) 3.552 1.323
Cg2···Cg2i 3.6513 (14) 3.378 1.386

Symmetry codes: (i) 1-x, 1-y, 1-z, (ii) 2-x, 1-y, 1-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2615).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Filipenko, O. S., Chuev, I. I., Leonova, L. S., Shilov, G. V. & Aldoshin, S. M. (2001). Dokl. Phys. Chem.376, 27–30.
  7. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  8. O’Donnell, L., Kristen, M. R., Margaret, E. J. & Evan, R. S. (2001). Endocr. Rev.22, 289–318.
  9. Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884–o885.
  10. Schwartz, J., Freeman, R. & Frishman, W. (1995). J. Clin. Pharmacol.35, 1–16. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045034/dn2615sup1.cif

e-66-o3101-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045034/dn2615Isup2.hkl

e-66-o3101-Isup2.hkl (81.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES