Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3133. doi: 10.1107/S1600536810045484

3,6,8-Tribromo­quinoline

Ísmail Çelik a, Mehmet Akkurt b,*, Salih Ökten c, Osman Çakmak c, Santiago García-Granda d
PMCID: PMC3011610  PMID: 21589435

Abstract

The title mol­ecule, C9H4Br3N, is almost planar, the maximum deviation being 0.110 (1) Å. The crystal structure is stabilized by weak aromatic π–π inter­actions [centroid–centroid distance = 3.802 (4) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent mol­ecules.

Related literature

For background to the synthesis of natural biologically active quinoline derivatives and for the synthesis of the title compound, see: Şahin et al. (2008). For the structure of 6,8-dibromo­quinoline, see: Çelik et al. (2010).graphic file with name e-66-o3133-scheme1.jpg

Experimental

Crystal data

  • C9H4Br3N

  • M r = 365.83

  • Monoclinic, Inline graphic

  • a = 3.9810 (2) Å

  • b = 12.4176 (4) Å

  • c = 19.7419 (6) Å

  • β = 92.827 (3)°

  • V = 974.74 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 14.93 mm−1

  • T = 296 K

  • 0.51 × 0.06 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.049, T max = 0.663

  • 3688 measured reflections

  • 1816 independent reflections

  • 1484 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.150

  • S = 1.05

  • 1816 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045484/pv2350sup1.cif

e-66-o3133-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045484/pv2350Isup2.hkl

e-66-o3133-Isup2.hkl (89.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Cumhuriyet University Research Foundation (CUBAP grant No. 2009/ F-266) for financial support.

supplementary crystallographic information

Comment

The presence of quinoline skeleton in the framework of pharmacologically active compounds and natural products has spurred on the development of different strategies for their synthesis. The lithium–halogen exchange reaction of the title compound (I) may serve for the synthesis of natural biologically active quinoline derivatives, such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008). In this paper we report a one pot synthesis of (I) with high yield (90%) and its crystal structure.

The title molecule is almost planar, with the maximum and minimum deviations from the mean plane being 0.110 (1) and -0.001 (6) Å for Br2 and C4, respectively. Its crystal structure is stabilized by weak π–π stacking interactions between the pyridine and benzene rings of the quinoline ring systems of the adjacent molecules [Cg1···Cg2i = 3.802 (4) Å; symmetry code: (i) 1 + x, y, z; Cg1 and Cg2 are centroids of the N1/C1/C6–C9 pyridine and C1–C6 benzene rings of the quinoline ring system, respectively].

The crystal structure of 6,8-dibromoquinoline has been reported recently Çelik et al. (2010).

Experimental

6,8-Dibromo-1,2,3,4-tetrahydroquinoline was synthesized according to the literature method (Şahin et al., 2008). To a solution of 6,8-dibromo-1,2,3,4-tetrahydroquinoline (0.5 g, 3.75 mmol, 1 eq) in CHCl3 (20 ml) was dropped bromine (1.8 g, 11.25 mmol, 3 eq) in CHCl3 (10 ml) over 5 min in the dark and at room temperature. After completion of the reaction (bromine consumed completely, 3 days), the solid was dissolved in CHCl3 (35 ml) and the organic layer was washed with 5% NaHCO3 solution (3x20 ml) and dried over Na2SO4. After evaporation of the solvent, the crude material (1.32 g) was passed through a short alumina column eluting with EtOAc–hexane (1:12, 75 ml) (hexane/ethyl acetate, 9:1, Rf= 0.65). Colourless solid residue was obtained. The mixture was recrystallized from the solvent (benzene) in a freezer (263 K) to give pure 3,6,8-tribromoquinoline in 90% yield (1.24 g) if the form of colourless neddle shaped crystals; m.p. 441–443 K.

Refinement

H atoms were included in geometric positions with C—H = 0.93 Å and refined by using a riding model [Uiso(H) = 1.2Ueq(C)]. The highest peak in the final difference map was located 0.92Å from Br2, while the deepest hole was located 1.05Å from Br3.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. Displacement ellipsoids for have been drawn at the 50% probability level.

Crystal data

C9H4Br3N F(000) = 680
Mr = 365.83 Dx = 2.493 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yn Cell parameters from 2025 reflections
a = 3.9810 (2) Å θ = 3.6–70.4°
b = 12.4176 (4) Å µ = 14.93 mm1
c = 19.7419 (6) Å T = 296 K
β = 92.827 (3)° Needle, colourless
V = 974.74 (7) Å3 0.51 × 0.06 × 0.03 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector 1816 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1484 reflections with I > 2σ(I)
graphite Rint = 0.060
Detector resolution: 10.2673 pixels mm-1 θmax = 70.6°, θmin = 5.7°
ω scans h = −4→4
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −9→15
Tmin = 0.049, Tmax = 0.663 l = −22→24
3688 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1066P)2] where P = (Fo2 + 2Fc2)/3
1816 reflections (Δ/σ)max = 0.001
118 parameters Δρmax = 1.45 e Å3
0 restraints Δρmin = −0.79 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.6380 (2) 0.29099 (6) 0.90189 (4) 0.0568 (3)
Br2 0.11453 (19) −0.12590 (6) 0.92944 (4) 0.0525 (3)
Br3 0.7497 (2) 0.08258 (7) 0.56672 (4) 0.0608 (3)
N1 0.7203 (14) 0.2168 (5) 0.7553 (3) 0.0440 (17)
C1 0.5666 (16) 0.1396 (5) 0.7921 (3) 0.0396 (17)
C2 0.5134 (15) 0.1576 (5) 0.8619 (3) 0.0404 (17)
C3 0.3758 (16) 0.0808 (5) 0.9010 (3) 0.0428 (17)
C4 0.2822 (16) −0.0184 (5) 0.8725 (3) 0.0425 (17)
C5 0.3078 (15) −0.0384 (5) 0.8042 (3) 0.0405 (17)
C6 0.4583 (15) 0.0399 (5) 0.7636 (3) 0.0387 (17)
C7 0.5126 (16) 0.0209 (5) 0.6946 (3) 0.0426 (17)
C8 0.6665 (16) 0.0996 (5) 0.6597 (3) 0.0429 (17)
C9 0.7713 (17) 0.1961 (6) 0.6919 (3) 0.0462 (17)
H3 0.34400 0.09420 0.94660 0.0520*
H5 0.22720 −0.10250 0.78520 0.0480*
H7 0.44560 −0.04330 0.67380 0.0510*
H9 0.88170 0.24730 0.66670 0.0550*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0752 (6) 0.0456 (4) 0.0506 (5) −0.0125 (3) 0.0119 (4) −0.0120 (3)
Br2 0.0622 (5) 0.0498 (5) 0.0464 (4) −0.0097 (3) 0.0107 (3) 0.0057 (3)
Br3 0.0798 (6) 0.0652 (5) 0.0385 (4) 0.0047 (4) 0.0132 (3) −0.0003 (3)
N1 0.053 (3) 0.040 (3) 0.039 (3) −0.003 (2) 0.003 (2) 0.002 (2)
C1 0.043 (3) 0.032 (3) 0.044 (3) 0.002 (2) 0.003 (2) 0.002 (2)
C2 0.044 (3) 0.037 (3) 0.040 (3) 0.002 (2) 0.000 (2) −0.004 (2)
C3 0.042 (3) 0.050 (3) 0.037 (3) −0.003 (3) 0.007 (2) −0.006 (3)
C4 0.046 (3) 0.039 (3) 0.043 (3) 0.000 (3) 0.006 (2) 0.003 (2)
C5 0.045 (3) 0.038 (3) 0.038 (3) 0.000 (2) −0.004 (2) 0.000 (2)
C6 0.039 (3) 0.038 (3) 0.039 (3) 0.006 (2) 0.000 (2) 0.003 (2)
C7 0.048 (3) 0.041 (3) 0.039 (3) 0.007 (3) 0.005 (2) −0.003 (2)
C8 0.045 (3) 0.047 (3) 0.037 (3) 0.010 (3) 0.004 (2) 0.003 (2)
C9 0.053 (3) 0.047 (3) 0.039 (3) −0.002 (3) 0.006 (3) 0.004 (2)

Geometric parameters (Å, °)

Br1—C2 1.891 (6) C4—C5 1.380 (8)
Br2—C4 1.888 (6) C5—C6 1.412 (9)
Br3—C8 1.893 (6) C6—C7 1.410 (8)
N1—C1 1.366 (9) C7—C8 1.359 (9)
N1—C9 1.303 (8) C8—C9 1.410 (9)
C1—C2 1.422 (8) C3—H3 0.9300
C1—C6 1.418 (9) C5—H5 0.9300
C2—C3 1.359 (9) C7—H7 0.9300
C3—C4 1.397 (9) C9—H9 0.9300
Br1···N1 3.070 (6) C7···C8ii 3.542 (9)
Br1···Br3i 3.6969 (12) C7···Br1iv 3.738 (6)
Br1···C7i 3.738 (6) C8···C7viii 3.542 (9)
Br2···C4ii 3.696 (6) C9···Br2ix 3.553 (7)
Br2···C9iii 3.553 (7) C9···C6viii 3.587 (9)
Br3···Br1iv 3.6969 (12) C5···H9iv 2.9800
Br3···Br3v 3.8186 (12) H3···Br2vii 3.1500
Br1···H7i 3.0800 H3···Br2vi 3.2000
Br2···H9iii 3.1000 H5···H7 2.5100
Br2···H3vi 3.2000 H5···H9iv 2.5800
Br2···H9iv 3.2400 H7···H5 2.5100
Br2···H3vii 3.1500 H7···Br1iv 3.0800
N1···Br1 3.070 (6) H9···Br2ix 3.1000
C4···Br2viii 3.696 (6) H9···Br2i 3.2400
C5···C6ii 3.572 (8) H9···C5i 2.9800
C6···C5viii 3.572 (8) H9···H5i 2.5800
C6···C9ii 3.587 (9)
C1—N1—C9 117.9 (6) C5—C6—C7 121.5 (6)
N1—C1—C2 119.8 (6) C6—C7—C8 117.7 (6)
N1—C1—C6 122.5 (6) Br3—C8—C7 121.1 (5)
C2—C1—C6 117.7 (5) Br3—C8—C9 118.0 (5)
Br1—C2—C1 119.6 (5) C7—C8—C9 120.9 (6)
Br1—C2—C3 118.8 (5) N1—C9—C8 123.0 (6)
C1—C2—C3 121.6 (6) C2—C3—H3 120.00
C2—C3—C4 119.8 (6) C4—C3—H3 120.00
Br2—C4—C3 118.6 (4) C4—C5—H5 120.00
Br2—C4—C5 120.0 (5) C6—C5—H5 121.00
C3—C4—C5 121.4 (6) C6—C7—H7 121.00
C4—C5—C6 119.0 (6) C8—C7—H7 121.00
C1—C6—C5 120.3 (5) N1—C9—H9 119.00
C1—C6—C7 118.1 (5) C8—C9—H9 118.00
C9—N1—C1—C2 178.4 (6) C2—C3—C4—Br2 176.6 (5)
C9—N1—C1—C6 −0.9 (9) C2—C3—C4—C5 −3.9 (10)
C1—N1—C9—C8 1.9 (10) Br2—C4—C5—C6 −175.1 (5)
N1—C1—C2—Br1 2.9 (8) C3—C4—C5—C6 5.4 (9)
N1—C1—C2—C3 −176.9 (6) C4—C5—C6—C1 −3.0 (9)
C6—C1—C2—Br1 −177.8 (4) C4—C5—C6—C7 175.5 (6)
C6—C1—C2—C3 2.5 (9) C1—C6—C7—C8 0.1 (9)
N1—C1—C6—C5 178.5 (6) C5—C6—C7—C8 −178.4 (6)
N1—C1—C6—C7 −0.1 (9) C6—C7—C8—Br3 −179.7 (5)
C2—C1—C6—C5 −0.9 (9) C6—C7—C8—C9 0.8 (9)
C2—C1—C6—C7 −179.5 (6) Br3—C8—C9—N1 178.6 (5)
Br1—C2—C3—C4 −179.9 (5) C7—C8—C9—N1 −1.9 (10)
C1—C2—C3—C4 −0.2 (9)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+1, −y, −z+1; (vi) −x+1, −y, −z+2; (vii) −x, −y, −z+2; (viii) x+1, y, z; (ix) −x+1/2, y+1/2, −z+3/2.

Table 1 π–π Stacking interactions in the title structure

Cg1 and Cg2 are centroids of the N1/C1/C6–C9 pyridine and C1–C6 benzene rings of the quinoline ring system, respectively.

Ring 1 Ring 2(sym) (Ring 1)···(Ring 2) (Å)
Cg1 Cg2i 3.802 (4)

i: 1+x, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2350).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010). Acta Cryst. E66, o2997–o2998. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Şahin, A. O., Çakmak, O., Demirtaş, I., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068–10074.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045484/pv2350sup1.cif

e-66-o3133-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045484/pv2350Isup2.hkl

e-66-o3133-Isup2.hkl (89.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES