Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 20;66(Pt 12):o3221. doi: 10.1107/S1600536810046775

Diethyl 2-amino-5-[(E)-(1-methyl-1H-pyrrol-2-yl)methylideneamino]thiophene-3,4-dicarboxylate

Stéphane Dufresne a, W G Skene a,*
PMCID: PMC3011617  PMID: 21589512

Abstract

The structure of the title compound, C16H19N3O4S, shows the planes described by the thio­phene and the pyrroles are twisted by 17.06 (4)°. Additionally, the structure shows the azomethine bond adopts the E configuration, while the pyrrole is disordered as a heterocycle flip [occupancy ratio 0.729 (5):0.271 (5)]. The three-dimensional network is well packed and involves N–H⋯O hydrogen bonding and π–π stacking [centroid–centroid distance = 4.294 (8) Å].

Related literature

For our on-going research on conjugated azomethines, see: Dufresne & Skene (2008). For bond lengths in comparable azomethines, see: Skene et al. (2006); Dufresne & Skene (2010).graphic file with name e-66-o3221-scheme1.jpg

Experimental

Crystal data

  • C16H19N3O4S

  • M r = 349.40

  • Monoclinic, Inline graphic

  • a = 8.8212 (18) Å

  • b = 9.0799 (18) Å

  • c = 21.793 (4) Å

  • β = 97.50 (3)°

  • V = 1730.6 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 123 K

  • 0.17 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996) T min = 0.710, T max = 0.762

  • 20876 measured reflections

  • 3367 independent reflections

  • 3046 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.07

  • 3367 reflections

  • 267 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046775/bh2321sup1.cif

e-66-o3221-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046775/bh2321Isup2.hkl

e-66-o3221-Isup2.hkl (165.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.88 2.09 2.925 (3) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

NSERC Canada is thanked for DG and RTI grants allowing this work to be performed in addition to CFI for additional equipment funding. SD also thanks NSERC for a graduate scholarship. WGS acknowledges both the Alexander von Humboldt Foundation and the RSC for a JWT Jones Travelling fellowships, allowing the completion of this manuscript.

supplementary crystallographic information

Comment

During our on-going research relating to conjugated azomethines (Dufresne & Skene, 2008), we prepared the title compound. The structure is given in figure 1. The pyrrole is disordered. The occupation factor was found to be 73% for the antiperiplanar heterocycle. The salient feature of the resolved structure is assigning the absolute isomer of the azomethine, which is not readily possible by other means. The E isomer was found and the crystal symmetry was P21/c. Neither solvent nor counter-ions were found in the structure.

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.372 (2), 1.292 (2) and 1.424 (2) Å, respectively. These are similar to comparable azomethines (Skene et al., 2006 and Dufresne & Skene, 2010) whose homologue lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

We found that the heterocycles of the title compound are not coplanar, according to angle between the mean planes described by them. The angle between these planes was found to be 17.06 (4)°. This is in contrast to an analogous thiophene-azomethine compound (Skene et al., 2006) whose mean plane angle is 7.25 (11)°.

Figure 2 shows the H-bonding occurring within the lattice. Only one H-bonding was found between N1—H1B···O3ii with an angle of 157.1° and a distance of 2.925 (3) Å between the nitrogen and the oxygen. Hydrogen bonding and π-stacking are the driving forces for the overall assembly. π-stacking was found to take place between the pyrroles as seen in Figure 3.

Experimental

1-Methyl-2-pyrrole-carboxaldehyde and 2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester were mixed in anhydrous 2-propanol with a catalytic amount of TFA and refluxed for 12 h. The reaction was then purified by flash chromatography to afford the title compound as a yellow solid. Single crystals were obtained by slow evaporation of an acetone solution.

Refinement

C-bonded H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2-1.5 Ueq(C). The protons on the amino group were placed in calculated positions (N—H = 0.88 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 Ueq(N). During the refinement, evidence came that the structure was disordered as an inversion of terminal heterocycles. We first tried to fix each part to half of the weight and then let it vary to the optimized proportion of 73:27. We were forced to add constraints to the minor counterpart so it looks like the major one. We used fixed similar temperature factors, as well as distances and angles restraints with every disordered atom.

Figures

Fig. 1.

Fig. 1.

ORTEP representation of the title molecule with the numbering scheme adopted (Farrugia, 1997). The disorder on the pyrrole unit is represented by prime symbols. Ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

Supramolecular structure showing the intermolecular H-bonding giving the structural arrangement. Disorder has been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) x, 1 + y, z.]

Fig. 3.

Fig. 3.

The three-dimensional network demonstrating the π-stacking in the lattice. Disorder has been omitted for clarity.

Crystal data

C16H19N3O4S F(000) = 736
Mr = 349.40 Dx = 1.341 Mg m3
Monoclinic, P21/c Melting point: 404(2) K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 8.8212 (18) Å Cell parameters from 10603 reflections
b = 9.0799 (18) Å θ = 4.1–71.3°
c = 21.793 (4) Å µ = 1.89 mm1
β = 97.50 (3)° T = 123 K
V = 1730.6 (6) Å3 Block, yellow
Z = 4 0.17 × 0.16 × 0.15 mm

Data collection

Bruker SMART 6000 diffractometer 3367 independent reflections
Radiation source: Rotating Anode 3046 reflections with I > 2σ(I)
Montel 200 optics Rint = 0.034
Detector resolution: 5.5 pixels mm-1 θmax = 72.0°, θmin = 4.1°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick,1996) k = −11→11
Tmin = 0.710, Tmax = 0.762 l = −26→25
20876 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.153P] where P = (Fo2 + 2Fc2)/3
3367 reflections (Δ/σ)max < 0.001
267 parameters Δρmax = 0.32 e Å3
32 restraints Δρmin = −0.54 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.45470 (4) 0.43388 (4) 0.275627 (17) 0.02979 (14)
O1 0.80431 (13) 0.22781 (12) 0.16548 (5) 0.0338 (3)
O2 0.89746 (11) 0.11974 (11) 0.25566 (5) 0.0280 (2)
O3 0.73230 (12) 0.04262 (11) 0.38224 (5) 0.0347 (3)
O4 0.89935 (11) 0.22984 (11) 0.38638 (5) 0.0288 (2)
N1 0.56568 (15) 0.42094 (15) 0.16734 (6) 0.0352 (3)
H1A 0.6308 0.3913 0.1426 0.042*
H1B 0.4906 0.4809 0.1534 0.042*
N2 0.50239 (13) 0.31869 (14) 0.39473 (6) 0.0304 (3)
C1 0.58092 (15) 0.37474 (15) 0.22635 (6) 0.0255 (3)
C2 0.69216 (14) 0.28057 (14) 0.25579 (6) 0.0217 (3)
C3 0.67137 (15) 0.25520 (14) 0.31923 (6) 0.0227 (3)
C4 0.54893 (15) 0.32748 (16) 0.33720 (7) 0.0268 (3)
C5 0.39981 (16) 0.40771 (17) 0.41036 (8) 0.0328 (3)
H5 0.3630 0.4830 0.3820 0.039*
C6 0.33869 (17) 0.39978 (19) 0.46758 (8) 0.0377 (4)
C11 0.80092 (15) 0.20966 (14) 0.22090 (6) 0.0231 (3)
C12 1.01267 (19) 0.04672 (18) 0.22452 (8) 0.0370 (4)
H12A 0.9660 0.0140 0.1830 0.044*
H12B 1.0502 −0.0417 0.2484 0.044*
C13 1.14477 (19) 0.1469 (2) 0.21800 (9) 0.0468 (5)
H13A 1.1091 0.2309 0.1918 0.070*
H13B 1.2228 0.0928 0.1990 0.070*
H13C 1.1887 0.1824 0.2589 0.070*
C14 0.76941 (15) 0.16206 (14) 0.36484 (6) 0.0229 (3)
C15 1.00158 (18) 0.15225 (19) 0.43389 (7) 0.0357 (4)
H15A 0.9401 0.0962 0.4608 0.043*
H15B 1.0642 0.2248 0.4600 0.043*
C16 1.1047 (2) 0.0488 (2) 0.40530 (9) 0.0498 (5)
H16A 1.0429 −0.0259 0.3811 0.075*
H16B 1.1741 0.0005 0.4380 0.075*
H16C 1.1644 0.1040 0.3782 0.075*
N3 0.3667 (7) 0.3033 (4) 0.5110 (3) 0.0300 (10) 0.729 (5)
C7 0.2273 (5) 0.5042 (6) 0.4841 (2) 0.0307 (9) 0.729 (5)
H7 0.1852 0.5864 0.4609 0.037* 0.729 (5)
C8 0.1955 (9) 0.4567 (9) 0.5423 (3) 0.0351 (13) 0.729 (5)
H8 0.1274 0.5019 0.5670 0.042* 0.729 (5)
C9 0.2812 (8) 0.3328 (7) 0.5569 (3) 0.0339 (12) 0.729 (5)
H9 0.2807 0.2761 0.5935 0.041* 0.729 (5)
C10 0.4701 (3) 0.1768 (3) 0.51050 (11) 0.0425 (7) 0.729 (5)
H10A 0.4547 0.1301 0.4696 0.064* 0.729 (5)
H10B 0.4484 0.1055 0.5420 0.064* 0.729 (5)
H10C 0.5763 0.2104 0.5196 0.064* 0.729 (5)
N83 0.2589 (11) 0.4768 (12) 0.5004 (4) 0.0224 (17) 0.271 (5)
C87 0.369 (2) 0.2593 (12) 0.5158 (9) 0.027 (2) 0.271 (5)
H87 0.4264 0.1731 0.5101 0.033* 0.271 (5)
C88 0.290 (2) 0.2937 (17) 0.5684 (7) 0.026 (2) 0.271 (5)
H88 0.2875 0.2365 0.6048 0.031* 0.271 (5)
C89 0.221 (2) 0.426 (2) 0.5544 (8) 0.028 (3) 0.271 (5)
H89 0.1559 0.4746 0.5792 0.033* 0.271 (5)
C90 0.2156 (6) 0.6219 (7) 0.4747 (2) 0.0302 (15) 0.271 (5)
H90A 0.3063 0.6850 0.4773 0.045* 0.271 (5)
H90B 0.1400 0.6666 0.4982 0.045* 0.271 (5)
H90C 0.1713 0.6113 0.4312 0.045* 0.271 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0183 (2) 0.0303 (2) 0.0411 (2) 0.00671 (12) 0.00480 (14) 0.00178 (13)
O1 0.0328 (6) 0.0391 (6) 0.0299 (5) 0.0073 (4) 0.0059 (4) −0.0022 (4)
O2 0.0241 (5) 0.0257 (5) 0.0357 (5) 0.0080 (4) 0.0101 (4) 0.0037 (4)
O3 0.0277 (5) 0.0292 (5) 0.0458 (6) −0.0060 (4) −0.0010 (5) 0.0100 (5)
O4 0.0195 (5) 0.0273 (5) 0.0379 (6) −0.0020 (4) −0.0026 (4) −0.0003 (4)
N1 0.0293 (7) 0.0422 (8) 0.0333 (7) 0.0123 (5) 0.0008 (5) 0.0051 (5)
N2 0.0206 (6) 0.0346 (7) 0.0376 (7) −0.0001 (5) 0.0096 (5) −0.0028 (5)
C1 0.0188 (6) 0.0236 (7) 0.0334 (7) −0.0004 (5) 0.0009 (5) −0.0015 (5)
C2 0.0170 (6) 0.0183 (6) 0.0296 (7) −0.0003 (5) 0.0028 (5) −0.0015 (5)
C3 0.0172 (6) 0.0200 (6) 0.0310 (7) −0.0017 (5) 0.0037 (5) −0.0005 (5)
C4 0.0181 (6) 0.0264 (7) 0.0363 (7) 0.0000 (5) 0.0053 (5) −0.0001 (5)
C5 0.0225 (7) 0.0314 (7) 0.0461 (9) −0.0030 (5) 0.0107 (6) −0.0042 (6)
C6 0.0253 (8) 0.0436 (9) 0.0470 (10) −0.0086 (7) 0.0152 (7) −0.0144 (8)
C11 0.0198 (6) 0.0196 (6) 0.0298 (7) −0.0015 (5) 0.0033 (5) −0.0019 (5)
C12 0.0344 (8) 0.0303 (8) 0.0499 (9) 0.0153 (6) 0.0185 (7) 0.0049 (6)
C13 0.0295 (8) 0.0536 (11) 0.0611 (11) 0.0137 (7) 0.0200 (8) 0.0188 (9)
C14 0.0176 (6) 0.0231 (6) 0.0283 (6) −0.0012 (5) 0.0045 (5) −0.0016 (5)
C15 0.0284 (7) 0.0422 (8) 0.0336 (8) 0.0025 (6) −0.0072 (6) 0.0008 (6)
C16 0.0381 (10) 0.0591 (11) 0.0499 (10) 0.0204 (8) −0.0031 (8) 0.0037 (8)
N3 0.0230 (11) 0.032 (2) 0.0357 (16) 0.001 (2) 0.0083 (9) −0.005 (2)
C7 0.0216 (19) 0.030 (3) 0.041 (3) 0.0043 (13) 0.0066 (15) −0.0019 (16)
C8 0.028 (2) 0.040 (3) 0.041 (3) −0.0014 (19) 0.015 (2) −0.012 (2)
C9 0.0328 (18) 0.044 (4) 0.026 (2) 0.000 (3) 0.0054 (17) 0.003 (2)
C10 0.0417 (14) 0.0451 (14) 0.0425 (13) 0.0156 (11) 0.0120 (10) 0.0147 (10)
N83 0.018 (4) 0.019 (4) 0.029 (4) 0.007 (3) −0.003 (3) 0.007 (3)
C87 0.035 (4) 0.012 (5) 0.036 (4) −0.003 (4) 0.007 (3) 0.000 (4)
C88 0.032 (4) 0.026 (6) 0.021 (5) 0.008 (4) 0.010 (4) 0.010 (3)
C89 0.031 (7) 0.031 (8) 0.023 (4) 0.000 (5) 0.009 (4) 0.008 (4)
C90 0.030 (3) 0.033 (4) 0.029 (3) 0.008 (2) 0.006 (2) 0.008 (2)

Geometric parameters (Å, °)

S1—C1 1.7301 (15) C13—H13b 0.98
S1—C4 1.7703 (15) C13—H13c 0.98
O1—C11 1.2232 (17) C15—C16 1.499 (2)
O2—C11 1.3407 (16) C15—H15a 0.99
O2—C12 1.4537 (17) C15—H15b 0.99
O3—C14 1.2080 (17) C16—H16a 0.98
O4—C14 1.3313 (16) C16—H16b 0.98
O4—C15 1.4622 (17) C16—H16c 0.98
N1—C1 1.3428 (19) N3—C9 1.354 (7)
N1—H1a 0.88 N3—C10 1.468 (4)
N1—H1b 0.88 C7—C8 1.402 (7)
N2—C5 1.2918 (19) C7—H7 0.95
N2—C4 1.3715 (19) C8—C9 1.369 (5)
C1—C2 1.3933 (18) C8—H8 0.95
C2—C3 1.4368 (18) C9—H9 0.95
C2—C11 1.4503 (18) C10—H10a 0.98
C3—C4 1.3643 (19) C10—H10b 0.98
C3—C14 1.4923 (18) C10—H10c 0.98
C5—C6 1.424 (2) N83—C89 1.346 (15)
C5—H5 0.95 N83—C90 1.463 (8)
C6—N83 1.276 (12) C87—C88 1.450 (18)
C6—N3 1.290 (5) C87—H87 0.95
C6—C7 1.445 (5) C88—C89 1.361 (11)
C6—C87 1.652 (14) C88—H88 0.95
C12—C13 1.499 (2) C89—H89 0.95
C12—H12a 0.99 C90—H90a 0.98
C12—H12b 0.99 C90—H90b 0.98
C13—H13a 0.98 C90—H90c 0.98
C1—S1—C4 91.41 (7) O3—C14—O4 124.09 (13)
C11—O2—C12 116.43 (11) O3—C14—C3 124.09 (12)
C14—O4—C15 116.74 (11) O4—C14—C3 111.73 (11)
C1—N1—H1A 120 O4—C15—C16 111.07 (13)
C1—N1—H1B 120 O4—C15—H15A 109.4
H1A—N1—H1B 120 C16—C15—H15A 109.4
C5—N2—C4 120.54 (14) O4—C15—H15B 109.4
N1—C1—C2 127.53 (13) C16—C15—H15B 109.4
N1—C1—S1 120.36 (11) H15A—C15—H15B 108
C2—C1—S1 112.11 (11) C15—C16—H16A 109.5
C1—C2—C3 111.76 (12) C15—C16—H16B 109.5
C1—C2—C11 120.36 (12) H16A—C16—H16B 109.5
C3—C2—C11 127.55 (12) C15—C16—H16C 109.5
C4—C3—C2 113.85 (12) H16A—C16—H16C 109.5
C4—C3—C14 119.55 (13) H16B—C16—H16C 109.5
C2—C3—C14 126.60 (12) C6—N3—C9 109.6 (4)
C3—C4—N2 125.24 (13) C6—N3—C10 125.8 (4)
C3—C4—S1 110.85 (11) C9—N3—C10 124.5 (4)
N2—C4—S1 123.90 (11) C8—C7—C6 104.3 (4)
N2—C5—C6 123.90 (16) C8—C7—H7 127.9
N2—C5—H5 118.1 C6—C7—H7 127.9
C6—C5—H5 118.1 C9—C8—C7 107.0 (5)
N83—C6—N3 91.6 (4) C9—C8—H8 126.5
N83—C6—C5 139.8 (4) C7—C8—H8 126.5
N3—C6—C5 128.3 (2) N3—C9—C8 109.6 (5)
N3—C6—C7 109.5 (3) N3—C9—H9 125.2
C5—C6—C7 122.2 (2) C8—C9—H9 125.2
N83—C6—C87 97.0 (7) C6—N83—C89 121.2 (1)
C5—C6—C87 123.2 (6) C6—N83—C90 114.4 (7)
C7—C6—C87 114.0 (6) C89—N83—C90 124.4 (1)
O1—C11—O2 122.99 (12) C88—C87—C6 106.4 (9)
O1—C11—C2 124.12 (13) C88—C87—H87 126.8
O2—C11—C2 112.89 (11) C6—C87—H87 126.8
O2—C12—C13 111.53 (14) C89—C88—C87 104.90 (11)
O2—C12—H12A 109.3 C89—C88—H88 127.5
C13—C12—H12A 109.3 C87—C88—H88 127.5
O2—C12—H12B 109.3 N83—C89—C88 110.30 (13)
C13—C12—H12B 109.3 N83—C89—H89 124.9
H12A—C12—H12B 108 C88—C89—H89 124.9
C12—C13—H13A 109.5 N83—C90—H90A 109.5
C12—C13—H13B 109.5 N83—C90—H90B 109.5
H13A—C13—H13B 109.5 H90A—C90—H90B 109.5
C12—C13—H13C 109.5 N83—C90—H90C 109.5
H13A—C13—H13C 109.5 H90A—C90—H90C 109.5
H13B—C13—H13C 109.5 H90B—C90—H90C 109.5
C4—S1—C1—N1 179.29 (13) C2—C3—C14—O4 77.00 (16)
C4—S1—C1—C2 −1.27 (11) C14—O4—C15—C16 86.08 (17)
N1—C1—C2—C3 −179.63 (13) N83—C6—N3—C9 8.3 (7)
S1—C1—C2—C3 0.98 (14) C5—C6—N3—C9 −178.0 (4)
N1—C1—C2—C11 −5.7 (2) C7—C6—N3—C9 0.4 (6)
S1—C1—C2—C11 174.91 (9) C87—C6—N3—C9 −126 (7)
C1—C2—C3—C4 −0.01 (16) N83—C6—N3—C10 −174.1 (7)
C11—C2—C3—C4 −173.40 (12) C5—C6—N3—C10 −0.4 (7)
C1—C2—C3—C14 −179.28 (12) C7—C6—N3—C10 178.1 (5)
C11—C2—C3—C14 7.3 (2) C87—C6—N3—C10 52 (6)
C2—C3—C4—N2 178.30 (12) N83—C6—C7—C8 −23.70 (19)
C14—C3—C4—N2 −2.4 (2) N3—C6—C7—C8 0.3 (5)
C2—C3—C4—S1 −0.93 (15) C5—C6—C7—C8 178.9 (4)
C14—C3—C4—S1 178.40 (9) C87—C6—C7—C8 7.2 (1)
C5—N2—C4—C3 169.49 (14) C6—C7—C8—C9 −1.0 (7)
C5—N2—C4—S1 −11.4 (2) C6—N3—C9—C8 −1.1 (8)
C1—S1—C4—C3 1.25 (11) C10—N3—C9—C8 −178.7 (6)
C1—S1—C4—N2 −177.99 (13) C7—C8—C9—N3 1.3 (9)
C4—N2—C5—C6 175.94 (14) N3—C6—N83—C89 −9.00 (14)
N2—C5—C6—N83 166.7 (8) C5—C6—N83—C89 178.70 (11)
N2—C5—C6—N3 −3.6 (4) C7—C6—N83—C89 148 (3)
N2—C5—C6—C7 178.1 (3) C87—C6—N83—C89 −3.40 (15)
N2—C5—C6—C87 −10.9 (9) N3—C6—N83—C90 170.4 (7)
C12—O2—C11—O1 2.11 (19) C5—C6—N83—C90 −2.00 (13)
C12—O2—C11—C2 −178.63 (12) C7—C6—N83—C90 −32.20 (15)
C1—C2—C11—O1 0.9 (2) C87—C6—N83—C90 176.0 (1)
C3—C2—C11—O1 173.81 (13) N83—C6—C87—C88 0.70 (15)
C1—C2—C11—O2 −178.33 (11) N3—C6—C87—C88 47 (6)
C3—C2—C11—O2 −5.44 (19) C5—C6—C87—C88 179.20 (11)
C11—O2—C12—C13 80.18 (17) C7—C6—C87—C88 −9.20 (17)
C15—O4—C14—O3 0.2 (2) C6—C87—C88—C89 2(2)
C15—O4—C14—C3 176.97 (11) C6—N83—C89—C88 5(2)
C4—C3—C14—O3 74.56 (18) C90—N83—C89—C88 −174.20 (14)
C2—C3—C14—O3 −106.21 (17) C87—C88—C89—N83 −4(2)
C4—C3—C14—O4 −102.23 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O3i 0.88 2.09 2.925 (3) 157

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2321).

References

  1. Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dufresne, S. & Skene, W. G. (2008). J. Org. Chem.73, 3859–3866. [DOI] [PubMed]
  4. Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3027. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Marris, T. (2004). UdMX Université de Montréal, Montréal, Québec, Canada.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046775/bh2321sup1.cif

e-66-o3221-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046775/bh2321Isup2.hkl

e-66-o3221-Isup2.hkl (165.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES