Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3178. doi: 10.1107/S1600536810046155

4-({[4-Amino-5-(4-chloro­anilinometh­yl)-4H-1,2,4-triazol-3-yl]sulfan­yl}acet­yl)-3-(4-meth­oxy­phen­yl)-1,2,3-oxadiazol-3-ium-5-olate

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3011622  PMID: 21589473

Abstract

In the title sydnone compound, C20H18ClN7O4S, the oxadiazole, triazole, chloro-substituted and meth­oxy-substituted phenyl rings are essentially planar, with maximum deviations of 0.007 (3), 0.009 (2), 0.017 (2) and 0.002 (3) Å, respectively. The dihedral angles between the chloro-substituted phenyl ring and the triazole ring, the triazole ring and the oxadiazole ring, and the oxadiazole ring and the methoxy-substituted phenyl ring are 80.02 (13), 85.68 (14) and 51.62 (14)°, respectively. In the crystal, mol­ecules are connected via inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For details and biological applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008); Kalluraya et al. (2002). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o3178-scheme1.jpg

Experimental

Crystal data

  • C20H18ClN7O4S

  • M r = 487.92

  • Monoclinic, Inline graphic

  • a = 20.109 (3) Å

  • b = 5.8952 (8) Å

  • c = 36.369 (5) Å

  • β = 96.076 (3)°

  • V = 4287.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.40 × 0.13 × 0.04 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.883, T max = 0.989

  • 8905 measured reflections

  • 4429 independent reflections

  • 3255 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.132

  • S = 1.08

  • 4429 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046155/rz2514sup1.cif

e-66-o3178-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046155/rz2514Isup2.hkl

e-66-o3178-Isup2.hkl (212.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1N6⋯N4i 0.93 (3) 2.08 (3) 2.947 (3) 155 (2)
N7—H1N7⋯O3ii 0.86 (3) 2.22 (3) 2.990 (3) 150 (3)
N6—H2N6⋯O2iii 0.90 (3) 2.15 (3) 2.983 (3) 153 (2)
C4—H4A⋯O4iv 0.93 2.53 3.337 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2002). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Because of the wide variety of properties displayed by sydnones, we were prompted to synthesize a new S-substituted triazoles containing a sydnone ring. Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 3-substituted-4-amino-5-mecapto-1,2,4-triazoles with 3-aryl-4-bromoacetylsydnones yielded S-substituted triazoles derivatives (Jyothi et al., 2008).

In the title compound, (Fig. 1), the rings A (C14–C19), B (N3/N4/N5/C11–C12), C (N1/N2/O1/C7–C8) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 80.02 (13)°, A/C = 53.76 (14)°, A/D = 5.24 (12)°, B/C = 85.68 (14)°, B/D = 85.12 (13)° and C/D = 51.62 (14)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the molecules are connected via intermolecular N6—H1N6···N4, N7—H1N7···O3, N6—H2N6···O2 and C4—H4A···O4 hydrogen bonds to form two-dimensional networks parallel to the ac plane.

Experimental

A catalytic amount of anhydrous sodium acetate was added to solution of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and 4-amino-5-(p-chlorophenyl) aminomethyl-4H-1,2,4-triazole-3-thiol (0.01 mol) in ethanol. The solution was stirred at room temperature for 2-3 hours. The solid product which separated was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from a mixture of DMF and ethanol (1:2 v/v) by slow evaporation.

Refinement

Atoms H1N6 and H2N6 were located in a difference Fourier map and refined freely [N–H = 0.86 (4)–0.92 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) fo methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) two-dimensional networks parallel to the ac plane.

Crystal data

C20H18ClN7O4S F(000) = 2016
Mr = 487.92 Dx = 1.512 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2099 reflections
a = 20.109 (3) Å θ = 3.2–28.1°
b = 5.8952 (8) Å µ = 0.32 mm1
c = 36.369 (5) Å T = 100 K
β = 96.076 (3)° Plate, yellow
V = 4287.2 (10) Å3 0.40 × 0.13 × 0.04 mm
Z = 8

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 4429 independent reflections
Radiation source: fine-focus sealed tube 3255 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −25→25
Tmin = 0.883, Tmax = 0.989 k = −7→7
8905 measured reflections l = −34→45

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.063P)2 + 1.4574P] where P = (Fo2 + 2Fc2)/3
4429 reflections (Δ/σ)max < 0.001
311 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.49815 (4) 0.56466 (15) 0.451234 (19) 0.0463 (2)
S1 0.41984 (3) 0.08369 (12) 0.219978 (18) 0.02935 (18)
O1 0.47596 (10) 0.9335 (3) 0.13290 (6) 0.0453 (6)
O2 0.52595 (10) 0.7437 (4) 0.18278 (6) 0.0484 (6)
O3 0.35348 (8) 0.3013 (3) 0.15066 (5) 0.0322 (4)
O4 0.17845 (9) 0.4831 (3) 0.01486 (5) 0.0349 (5)
N1 0.42244 (13) 0.9057 (4) 0.10652 (7) 0.0404 (6)
N2 0.39537 (10) 0.7121 (4) 0.11473 (6) 0.0280 (5)
N3 0.34474 (11) 0.4519 (4) 0.23488 (6) 0.0266 (5)
N4 0.30066 (10) 0.5097 (4) 0.26070 (5) 0.0251 (5)
N5 0.33599 (9) 0.1657 (3) 0.27278 (5) 0.0198 (4)
N6 0.34284 (12) −0.0438 (4) 0.29125 (6) 0.0254 (5)
H1N6 0.3216 (13) −0.156 (5) 0.2766 (7) 0.023 (7)*
N7 0.26410 (11) 0.5056 (4) 0.33948 (6) 0.0288 (5)
H1N7 0.2383 (17) 0.621 (6) 0.3370 (9) 0.056 (11)*
C1 0.28726 (14) 0.8080 (5) 0.08290 (7) 0.0332 (6)
H1A 0.2903 0.9472 0.0950 0.040*
C2 0.23260 (13) 0.7609 (5) 0.05768 (7) 0.0299 (6)
H2A 0.1986 0.8669 0.0526 0.036*
C3 0.22975 (13) 0.5494 (5) 0.04003 (7) 0.0282 (6)
C4 0.28062 (13) 0.3919 (4) 0.04767 (6) 0.0260 (6)
H4A 0.2779 0.2522 0.0357 0.031*
C5 0.33487 (13) 0.4398 (4) 0.07267 (6) 0.0241 (5)
H5A 0.3691 0.3347 0.0777 0.029*
C6 0.33718 (13) 0.6490 (4) 0.09012 (7) 0.0262 (6)
C7 0.48223 (14) 0.7465 (5) 0.15758 (8) 0.0374 (7)
C8 0.42757 (12) 0.6031 (5) 0.14469 (7) 0.0290 (6)
C9 0.40503 (12) 0.3965 (5) 0.16192 (7) 0.0271 (6)
C10 0.45183 (12) 0.3144 (5) 0.19467 (7) 0.0335 (6)
H10A 0.4618 0.4406 0.2115 0.040*
H10B 0.4935 0.2668 0.1859 0.040*
C11 0.36414 (11) 0.2442 (4) 0.24269 (6) 0.0237 (5)
C12 0.29609 (11) 0.3372 (4) 0.28250 (6) 0.0206 (5)
C13 0.25244 (12) 0.3233 (4) 0.31341 (7) 0.0260 (6)
H13A 0.2059 0.3259 0.3031 0.031*
H13B 0.2606 0.1801 0.3262 0.031*
C14 0.32161 (12) 0.5235 (4) 0.36322 (6) 0.0214 (5)
C15 0.36909 (12) 0.3484 (4) 0.36751 (6) 0.0218 (5)
H15A 0.3640 0.2210 0.3524 0.026*
C16 0.42330 (12) 0.3642 (5) 0.39407 (6) 0.0263 (6)
H16A 0.4544 0.2471 0.3969 0.032*
C17 0.43145 (13) 0.5526 (5) 0.41640 (7) 0.0285 (6)
C18 0.38641 (14) 0.7303 (5) 0.41185 (7) 0.0315 (6)
H18A 0.3927 0.8589 0.4266 0.038*
C19 0.33229 (13) 0.7165 (4) 0.38544 (7) 0.0300 (6)
H19A 0.3024 0.8370 0.3823 0.036*
C20 0.12571 (15) 0.6392 (6) 0.00442 (8) 0.0426 (8)
H20A 0.0941 0.5708 −0.0139 0.064*
H20B 0.1438 0.7737 −0.0056 0.064*
H20C 0.1037 0.6783 0.0257 0.064*
H2N6 0.3874 (13) −0.066 (4) 0.2955 (7) 0.018 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0354 (4) 0.0690 (6) 0.0335 (4) −0.0181 (4) −0.0004 (3) −0.0100 (4)
S1 0.0262 (3) 0.0321 (4) 0.0290 (3) 0.0061 (3) −0.0005 (3) −0.0056 (3)
O1 0.0459 (12) 0.0328 (12) 0.0607 (14) −0.0217 (10) 0.0229 (11) −0.0162 (11)
O2 0.0299 (11) 0.0598 (15) 0.0570 (13) −0.0188 (11) 0.0115 (10) −0.0279 (12)
O3 0.0285 (10) 0.0403 (11) 0.0269 (9) −0.0176 (9) −0.0010 (7) 0.0009 (8)
O4 0.0395 (11) 0.0384 (11) 0.0266 (9) 0.0133 (9) 0.0019 (8) 0.0056 (9)
N1 0.0466 (15) 0.0270 (13) 0.0518 (15) −0.0160 (12) 0.0246 (12) −0.0100 (12)
N2 0.0323 (12) 0.0208 (11) 0.0340 (11) −0.0107 (10) 0.0181 (9) −0.0083 (10)
N3 0.0317 (12) 0.0215 (11) 0.0256 (11) 0.0039 (10) −0.0010 (9) 0.0010 (9)
N4 0.0309 (11) 0.0180 (10) 0.0252 (10) 0.0023 (9) −0.0022 (9) −0.0002 (9)
N5 0.0198 (10) 0.0152 (10) 0.0228 (9) 0.0014 (8) −0.0047 (8) 0.0006 (8)
N6 0.0299 (12) 0.0157 (11) 0.0287 (11) 0.0060 (10) −0.0061 (9) 0.0027 (9)
N7 0.0310 (12) 0.0256 (12) 0.0297 (12) 0.0120 (11) 0.0030 (9) −0.0034 (10)
C1 0.0452 (16) 0.0207 (13) 0.0380 (14) 0.0020 (13) 0.0245 (13) −0.0018 (12)
C2 0.0354 (14) 0.0233 (13) 0.0335 (13) 0.0080 (12) 0.0155 (12) 0.0069 (12)
C3 0.0364 (14) 0.0297 (14) 0.0203 (12) 0.0029 (12) 0.0119 (11) 0.0058 (11)
C4 0.0393 (15) 0.0182 (12) 0.0217 (12) 0.0041 (11) 0.0083 (10) 0.0005 (10)
C5 0.0325 (13) 0.0168 (12) 0.0244 (12) 0.0007 (11) 0.0089 (10) 0.0021 (10)
C6 0.0316 (14) 0.0214 (13) 0.0275 (12) −0.0037 (11) 0.0124 (10) −0.0015 (11)
C7 0.0308 (14) 0.0361 (16) 0.0482 (16) −0.0155 (13) 0.0181 (13) −0.0211 (14)
C8 0.0248 (13) 0.0319 (15) 0.0318 (13) −0.0120 (12) 0.0105 (11) −0.0107 (12)
C9 0.0238 (13) 0.0324 (15) 0.0261 (12) −0.0059 (12) 0.0077 (10) −0.0105 (11)
C10 0.0226 (13) 0.0460 (17) 0.0317 (13) −0.0079 (13) 0.0017 (11) −0.0106 (13)
C11 0.0225 (12) 0.0251 (13) 0.0218 (12) 0.0035 (11) −0.0055 (10) −0.0030 (10)
C12 0.0199 (12) 0.0161 (12) 0.0240 (12) 0.0011 (10) −0.0061 (9) −0.0018 (10)
C13 0.0232 (12) 0.0245 (13) 0.0294 (13) 0.0033 (11) −0.0020 (10) 0.0007 (11)
C14 0.0259 (12) 0.0189 (12) 0.0206 (11) −0.0010 (10) 0.0080 (9) 0.0006 (10)
C15 0.0250 (12) 0.0194 (12) 0.0217 (11) −0.0010 (10) 0.0055 (9) −0.0023 (10)
C16 0.0231 (12) 0.0306 (14) 0.0261 (12) 0.0013 (11) 0.0074 (10) −0.0004 (11)
C17 0.0272 (13) 0.0364 (16) 0.0226 (12) −0.0116 (12) 0.0060 (10) −0.0025 (11)
C18 0.0445 (16) 0.0230 (14) 0.0290 (13) −0.0083 (13) 0.0139 (12) −0.0085 (11)
C19 0.0414 (15) 0.0210 (13) 0.0299 (13) 0.0047 (12) 0.0141 (12) −0.0015 (11)
C20 0.0397 (16) 0.0508 (19) 0.0381 (16) 0.0198 (15) 0.0080 (13) 0.0162 (15)

Geometric parameters (Å, °)

Cl1—C17 1.746 (3) C2—H2A 0.9300
S1—C11 1.740 (2) C3—C4 1.388 (4)
S1—C10 1.799 (3) C4—C5 1.374 (4)
O1—N1 1.373 (3) C4—H4A 0.9300
O1—C7 1.418 (4) C5—C6 1.385 (3)
O2—C7 1.201 (3) C5—H5A 0.9300
O3—C9 1.211 (3) C7—C8 1.426 (4)
O4—C3 1.362 (3) C8—C9 1.463 (4)
O4—C20 1.425 (3) C9—C10 1.517 (4)
N1—N2 1.312 (3) C10—H10A 0.9700
N2—C8 1.368 (3) C10—H10B 0.9700
N2—C6 1.445 (3) C12—C13 1.500 (3)
N3—C11 1.307 (3) C13—H13A 0.9700
N3—N4 1.400 (3) C13—H13B 0.9700
N4—C12 1.298 (3) C14—C19 1.398 (3)
N5—C12 1.361 (3) C14—C15 1.404 (3)
N5—C11 1.365 (3) C15—C16 1.381 (3)
N5—N6 1.406 (3) C15—H15A 0.9300
N6—H1N6 0.92 (3) C16—C17 1.375 (4)
N6—H2N6 0.90 (3) C16—H16A 0.9300
N7—C14 1.372 (3) C17—C18 1.383 (4)
N7—C13 1.436 (3) C18—C19 1.376 (4)
N7—H1N7 0.86 (4) C18—H18A 0.9300
C1—C6 1.378 (4) C19—H19A 0.9300
C1—C2 1.383 (4) C20—H20A 0.9600
C1—H1A 0.9300 C20—H20B 0.9600
C2—C3 1.401 (4) C20—H20C 0.9600
C11—S1—C10 96.59 (13) C8—C9—C10 114.0 (2)
N1—O1—C7 111.1 (2) C9—C10—S1 114.66 (18)
C3—O4—C20 118.9 (2) C9—C10—H10A 108.6
N2—N1—O1 105.0 (2) S1—C10—H10A 108.6
N1—N2—C8 114.6 (2) C9—C10—H10B 108.6
N1—N2—C6 114.3 (2) S1—C10—H10B 108.6
C8—N2—C6 131.0 (2) H10A—C10—H10B 107.6
C11—N3—N4 106.1 (2) N3—C11—N5 110.6 (2)
C12—N4—N3 108.1 (2) N3—C11—S1 126.8 (2)
C12—N5—C11 105.2 (2) N5—C11—S1 122.58 (19)
C12—N5—N6 124.0 (2) N4—C12—N5 110.0 (2)
C11—N5—N6 130.8 (2) N4—C12—C13 125.8 (2)
N5—N6—H1N6 109.7 (16) N5—C12—C13 124.2 (2)
N5—N6—H2N6 104.7 (16) N7—C13—C12 112.7 (2)
H1N6—N6—H2N6 113 (2) N7—C13—H13A 109.0
C14—N7—C13 122.7 (2) C12—C13—H13A 109.0
C14—N7—H1N7 118 (2) N7—C13—H13B 109.0
C13—N7—H1N7 118 (2) C12—C13—H13B 109.0
C6—C1—C2 120.1 (2) H13A—C13—H13B 107.8
C6—C1—H1A 120.0 N7—C14—C19 119.6 (2)
C2—C1—H1A 120.0 N7—C14—C15 122.1 (2)
C1—C2—C3 118.3 (2) C19—C14—C15 118.2 (2)
C1—C2—H2A 120.9 C16—C15—C14 120.3 (2)
C3—C2—H2A 120.9 C16—C15—H15A 119.8
O4—C3—C4 115.6 (2) C14—C15—H15A 119.8
O4—C3—C2 123.7 (2) C17—C16—C15 120.2 (2)
C4—C3—C2 120.7 (2) C17—C16—H16A 119.9
C5—C4—C3 120.8 (2) C15—C16—H16A 119.9
C5—C4—H4A 119.6 C16—C17—C18 120.4 (2)
C3—C4—H4A 119.6 C16—C17—Cl1 119.7 (2)
C4—C5—C6 118.2 (2) C18—C17—Cl1 119.9 (2)
C4—C5—H5A 120.9 C19—C18—C17 119.9 (2)
C6—C5—H5A 120.9 C19—C18—H18A 120.1
C1—C6—C5 122.0 (2) C17—C18—H18A 120.1
C1—C6—N2 117.9 (2) C18—C19—C14 120.9 (2)
C5—C6—N2 119.9 (2) C18—C19—H19A 119.6
O2—C7—O1 120.2 (3) C14—C19—H19A 119.6
O2—C7—C8 136.0 (3) O4—C20—H20A 109.5
O1—C7—C8 103.8 (2) O4—C20—H20B 109.5
N2—C8—C7 105.5 (2) H20A—C20—H20B 109.5
N2—C8—C9 126.2 (2) O4—C20—H20C 109.5
C7—C8—C9 128.0 (3) H20A—C20—H20C 109.5
O3—C9—C8 122.3 (2) H20B—C20—H20C 109.5
O3—C9—C10 123.7 (2)
C7—O1—N1—N2 1.3 (3) C7—C8—C9—C10 −8.4 (4)
O1—N1—N2—C8 −1.1 (3) O3—C9—C10—S1 −8.0 (3)
O1—N1—N2—C6 179.88 (19) C8—C9—C10—S1 172.08 (18)
C11—N3—N4—C12 0.3 (3) C11—S1—C10—C9 −75.5 (2)
C6—C1—C2—C3 0.0 (4) N4—N3—C11—N5 −1.3 (3)
C20—O4—C3—C4 −177.4 (2) N4—N3—C11—S1 −179.44 (17)
C20—O4—C3—C2 2.8 (3) C12—N5—C11—N3 1.7 (3)
C1—C2—C3—O4 179.7 (2) N6—N5—C11—N3 −179.1 (2)
C1—C2—C3—C4 −0.1 (4) C12—N5—C11—S1 179.98 (16)
O4—C3—C4—C5 −179.9 (2) N6—N5—C11—S1 −0.9 (3)
C2—C3—C4—C5 0.0 (4) C10—S1—C11—N3 13.6 (2)
C3—C4—C5—C6 0.3 (4) C10—S1—C11—N5 −164.31 (19)
C2—C1—C6—C5 0.2 (4) N3—N4—C12—N5 0.8 (3)
C2—C1—C6—N2 175.8 (2) N3—N4—C12—C13 −177.9 (2)
C4—C5—C6—C1 −0.4 (4) C11—N5—C12—N4 −1.5 (3)
C4—C5—C6—N2 −175.9 (2) N6—N5—C12—N4 179.3 (2)
N1—N2—C6—C1 −50.1 (3) C11—N5—C12—C13 177.2 (2)
C8—N2—C6—C1 131.1 (3) N6—N5—C12—C13 −2.0 (3)
N1—N2—C6—C5 125.5 (2) C14—N7—C13—C12 −70.2 (3)
C8—N2—C6—C5 −53.3 (3) N4—C12—C13—N7 −55.2 (3)
N1—O1—C7—O2 −179.0 (2) N5—C12—C13—N7 126.3 (2)
N1—O1—C7—C8 −1.0 (3) C13—N7—C14—C19 174.1 (2)
N1—N2—C8—C7 0.5 (3) C13—N7—C14—C15 −9.4 (4)
C6—N2—C8—C7 179.3 (2) N7—C14—C15—C16 −174.1 (2)
N1—N2—C8—C9 174.0 (2) C19—C14—C15—C16 2.5 (3)
C6—N2—C8—C9 −7.1 (4) C14—C15—C16—C17 −0.4 (4)
O2—C7—C8—N2 177.8 (3) C15—C16—C17—C18 −1.6 (4)
O1—C7—C8—N2 0.3 (3) C15—C16—C17—Cl1 177.12 (18)
O2—C7—C8—C9 4.4 (5) C16—C17—C18—C19 1.5 (4)
O1—C7—C8—C9 −173.1 (2) Cl1—C17—C18—C19 −177.23 (19)
N2—C8—C9—O3 −0.4 (4) C17—C18—C19—C14 0.6 (4)
C7—C8—C9—O3 171.7 (3) N7—C14—C19—C18 174.1 (2)
N2—C8—C9—C10 179.5 (2) C15—C14—C19—C18 −2.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N6—H1N6···N4i 0.93 (3) 2.08 (3) 2.947 (3) 155 (2)
N7—H1N7···O3ii 0.86 (3) 2.22 (3) 2.990 (3) 150 (3)
N6—H2N6···O2iii 0.90 (3) 2.15 (3) 2.983 (3) 153 (2)
C4—H4A···O4iv 0.93 2.53 3.337 (3) 145

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, y−1, −z+1/2; (iv) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2514).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem 43, 2831–2834. [DOI] [PubMed]
  5. Kalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.
  6. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem 43, 1715–1720. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046155/rz2514sup1.cif

e-66-o3178-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046155/rz2514Isup2.hkl

e-66-o3178-Isup2.hkl (212.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES