Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 20;66(Pt 12):o3240. doi: 10.1107/S160053681004701X

(E)-4-Meth­oxy-N′-(4-nitro­benzyl­idene)benzohydrazide methanol monosolvate

Hong-Yan Ban a,*
PMCID: PMC3011623  PMID: 21589529

Abstract

The hydrazone mol­ecule of the title compound, C15H13N3O4·CH4O, is nearly planar, with a dihedral angle between the two benzene rings of 1.2 (4)°. The mol­ecule exists in a trans configuration with respect to the central methyl­idene unit. In the crystal, the benzohydrazide and methanol mol­ecules are linked through inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a ,b ); Li & Ban (2009a ,b ); Yehye et al. (2008); Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al. (2008); Ejsmont et al. (2008).graphic file with name e-66-o3240-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O4·CH4O

  • M r = 331.33

  • Monoclinic, Inline graphic

  • a = 6.6482 (14) Å

  • b = 17.730 (3) Å

  • c = 13.898 (2) Å

  • β = 95.004 (3)°

  • V = 1631.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.980, T max = 0.983

  • 12876 measured reflections

  • 3466 independent reflections

  • 1184 reflections with I > 2σ(I)

  • R int = 0.115

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.204

  • S = 0.94

  • 3466 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004701X/rz2522sup1.cif

e-66-o3240-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004701X/rz2522Isup2.hkl

e-66-o3240-Isup2.hkl (170KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3 0.82 2.03 2.812 (4) 159
O5—H5⋯N2 0.82 2.61 3.194 (4) 129
N3—H3A⋯O5i 0.90 (1) 2.02 (2) 2.900 (4) 166 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The author acknowledges financial support by the Research Foundation of Liaoning Province (grant No. 2008470).

supplementary crystallographic information

Comment

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban & Li, 2008a,b; Li & Ban, 2009a,b). Herein the crystal structure of the title new compound is reported.

The asymmetric unit of the title compound consists of a hydrazone molecule and a methanol molecule (Fig. 1). The hydrazone molecule is nearly planar, the dihedral angle between the two benzene rings being 1.2 (4)°. The molecule exists in a trans configuration with respect to the central methylidene unit. In the crystal structure, the hydrazone molecules and the methanol molecules are linked through intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Experimental

The title compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 4-methoxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement

Atom H3A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å and Uiso fixed at 0.08 Å2. The remaining H atoms were placed in calculated positions (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O and methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C15H13N3O4·CH4O F(000) = 696
Mr = 331.33 Dx = 1.349 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 794 reflections
a = 6.6482 (14) Å θ = 2.7–26.5°
b = 17.730 (3) Å µ = 0.10 mm1
c = 13.898 (2) Å T = 298 K
β = 95.004 (3)° Block, colourless
V = 1631.9 (5) Å3 0.20 × 0.17 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3466 independent reflections
Radiation source: fine-focus sealed tube 1184 reflections with I > 2σ(I)
graphite Rint = 0.115
ω scans θmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −8→8
Tmin = 0.980, Tmax = 0.983 k = −22→22
12876 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204 H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3
3466 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4536 (7) −0.3135 (2) 0.1424 (3) 0.0634 (12)
N2 0.1193 (5) 0.0260 (2) 0.1132 (2) 0.0453 (9)
N3 0.0063 (5) 0.0908 (2) 0.1112 (3) 0.0460 (9)
O1 0.3670 (6) −0.3698 (2) 0.1665 (3) 0.0923 (13)
O2 0.6283 (6) −0.3132 (2) 0.1217 (3) 0.0930 (13)
O3 0.2843 (4) 0.15868 (16) 0.0864 (2) 0.0650 (10)
O4 −0.3188 (4) 0.43167 (16) 0.0795 (2) 0.0709 (10)
O5 0.5933 (4) 0.05685 (17) 0.1482 (3) 0.0642 (10)
H5 0.4898 0.0767 0.1237 0.096*
C1 0.1378 (6) −0.1068 (2) 0.1293 (3) 0.0424 (11)
C2 0.3344 (6) −0.1112 (2) 0.1018 (3) 0.0529 (12)
H2 0.3964 −0.0682 0.0801 0.063*
C3 0.4373 (6) −0.1786 (3) 0.1064 (3) 0.0549 (13)
H3 0.5680 −0.1817 0.0876 0.066*
C4 0.3437 (7) −0.2407 (2) 0.1391 (3) 0.0493 (12)
C5 0.1521 (7) −0.2403 (3) 0.1657 (3) 0.0586 (13)
H5A 0.0922 −0.2840 0.1866 0.070*
C6 0.0480 (6) −0.1719 (3) 0.1607 (3) 0.0563 (13)
H6 −0.0834 −0.1699 0.1786 0.068*
C7 0.0276 (6) −0.0354 (3) 0.1262 (3) 0.0495 (12)
H7 −0.1100 −0.0350 0.1338 0.059*
C8 0.1041 (7) 0.1569 (2) 0.0971 (3) 0.0461 (11)
C9 −0.0195 (6) 0.2263 (2) 0.0959 (3) 0.0449 (11)
C10 −0.2157 (6) 0.2311 (2) 0.1201 (3) 0.0508 (12)
H10 −0.2785 0.1877 0.1403 0.061*
C11 −0.3223 (6) 0.2981 (2) 0.1153 (3) 0.0535 (12)
H11 −0.4551 0.2998 0.1314 0.064*
C12 −0.2287 (7) 0.3619 (2) 0.0864 (3) 0.0540 (12)
C13 −0.0345 (7) 0.3593 (3) 0.0605 (4) 0.0829 (18)
H13 0.0277 0.4028 0.0402 0.100*
C14 0.0666 (7) 0.2920 (3) 0.0649 (4) 0.0745 (16)
H14 0.1977 0.2904 0.0465 0.089*
C15 −0.5263 (8) 0.4384 (3) 0.0967 (4) 0.0833 (17)
H15A −0.6078 0.4115 0.0477 0.125*
H15B −0.5642 0.4907 0.0951 0.125*
H15C −0.5467 0.4177 0.1589 0.125*
C16 0.5721 (7) 0.0414 (3) 0.2467 (4) 0.0823 (17)
H16A 0.6181 −0.0089 0.2617 0.123*
H16B 0.4327 0.0459 0.2588 0.123*
H16C 0.6512 0.0767 0.2863 0.123*
H3A −0.128 (2) 0.087 (2) 0.116 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.077 (3) 0.054 (3) 0.060 (3) 0.021 (3) 0.006 (2) 0.000 (2)
N2 0.041 (2) 0.038 (2) 0.056 (2) 0.0098 (19) 0.0024 (17) 0.0028 (18)
N3 0.030 (2) 0.039 (2) 0.069 (3) 0.0102 (19) 0.0049 (19) 0.0039 (19)
O1 0.117 (3) 0.047 (2) 0.115 (3) 0.022 (2) 0.025 (2) 0.015 (2)
O2 0.078 (3) 0.077 (3) 0.128 (3) 0.043 (2) 0.031 (2) 0.021 (2)
O3 0.0322 (17) 0.053 (2) 0.111 (3) 0.0070 (15) 0.0143 (17) 0.0145 (18)
O4 0.056 (2) 0.0407 (19) 0.115 (3) 0.0141 (17) −0.0002 (19) −0.0034 (19)
O5 0.0343 (18) 0.056 (2) 0.102 (3) 0.0096 (16) 0.0027 (17) 0.017 (2)
C1 0.037 (3) 0.040 (3) 0.049 (3) 0.002 (2) 0.004 (2) 0.001 (2)
C2 0.050 (3) 0.036 (3) 0.073 (3) 0.004 (2) 0.013 (2) 0.000 (2)
C3 0.037 (3) 0.050 (3) 0.077 (4) 0.005 (2) 0.006 (2) 0.002 (3)
C4 0.058 (3) 0.042 (3) 0.048 (3) 0.017 (2) 0.003 (2) 0.003 (2)
C5 0.061 (3) 0.044 (3) 0.073 (3) −0.002 (3) 0.017 (3) 0.008 (2)
C6 0.048 (3) 0.052 (3) 0.070 (4) 0.007 (3) 0.017 (2) 0.002 (3)
C7 0.034 (2) 0.051 (3) 0.063 (3) 0.007 (2) 0.004 (2) 0.002 (2)
C8 0.042 (3) 0.044 (3) 0.053 (3) 0.007 (2) 0.001 (2) 0.009 (2)
C9 0.035 (3) 0.044 (3) 0.056 (3) 0.001 (2) −0.001 (2) 0.002 (2)
C10 0.052 (3) 0.031 (3) 0.071 (3) 0.003 (2) 0.010 (2) 0.007 (2)
C11 0.049 (3) 0.039 (3) 0.074 (3) 0.008 (2) 0.013 (2) 0.009 (2)
C12 0.059 (3) 0.034 (3) 0.067 (3) 0.013 (2) −0.005 (3) 0.002 (2)
C13 0.051 (3) 0.047 (3) 0.152 (5) 0.005 (3) 0.020 (3) 0.015 (3)
C14 0.037 (3) 0.057 (3) 0.131 (5) 0.003 (3) 0.012 (3) 0.020 (3)
C15 0.091 (4) 0.057 (3) 0.106 (4) 0.036 (3) 0.029 (3) 0.009 (3)
C16 0.069 (4) 0.082 (4) 0.094 (5) 0.006 (3) −0.009 (3) −0.002 (3)

Geometric parameters (Å, °)

N1—O1 1.214 (4) C5—H5A 0.9300
N1—O2 1.221 (5) C6—H6 0.9300
N1—C4 1.482 (5) C7—H7 0.9300
N2—C7 1.269 (5) C8—C9 1.479 (5)
N2—N3 1.372 (4) C9—C10 1.377 (5)
N3—C8 1.363 (5) C9—C14 1.383 (5)
N3—H3A 0.902 (10) C10—C11 1.383 (5)
O3—C8 1.221 (4) C10—H10 0.9300
O4—C12 1.374 (5) C11—C12 1.367 (5)
O4—C15 1.426 (5) C11—H11 0.9300
O5—C16 1.415 (5) C12—C13 1.371 (6)
O5—H5 0.8200 C13—C14 1.369 (6)
C1—C6 1.386 (5) C13—H13 0.9300
C1—C2 1.395 (5) C14—H14 0.9300
C1—C7 1.461 (5) C15—H15A 0.9600
C2—C3 1.376 (5) C15—H15B 0.9600
C2—H2 0.9300 C15—H15C 0.9600
C3—C4 1.362 (5) C16—H16A 0.9600
C3—H3 0.9300 C16—H16B 0.9600
C4—C5 1.357 (5) C16—H16C 0.9600
C5—C6 1.395 (5)
O1—N1—O2 123.5 (4) N3—C8—C9 116.5 (4)
O1—N1—C4 118.7 (4) C10—C9—C14 116.8 (4)
O2—N1—C4 117.7 (5) C10—C9—C8 125.8 (4)
C7—N2—N3 116.9 (3) C14—C9—C8 117.4 (4)
C8—N3—N2 117.2 (3) C9—C10—C11 122.2 (4)
C8—N3—H3A 124 (3) C9—C10—H10 118.9
N2—N3—H3A 119 (3) C11—C10—H10 118.9
C12—O4—C15 119.1 (4) C12—C11—C10 118.7 (4)
C16—O5—H5 109.5 C12—C11—H11 120.7
C6—C1—C2 118.6 (4) C10—C11—H11 120.6
C6—C1—C7 120.1 (4) C11—C12—C13 120.9 (4)
C2—C1—C7 121.3 (4) C11—C12—O4 123.9 (4)
C3—C2—C1 120.6 (4) C13—C12—O4 115.2 (4)
C3—C2—H2 119.7 C14—C13—C12 119.2 (5)
C1—C2—H2 119.7 C14—C13—H13 120.4
C4—C3—C2 118.5 (4) C12—C13—H13 120.4
C4—C3—H3 120.7 C13—C14—C9 122.2 (4)
C2—C3—H3 120.7 C13—C14—H14 118.9
C5—C4—C3 123.6 (4) C9—C14—H14 118.9
C5—C4—N1 118.0 (4) O4—C15—H15A 109.5
C3—C4—N1 118.4 (4) O4—C15—H15B 109.5
C4—C5—C6 117.7 (4) H15A—C15—H15B 109.5
C4—C5—H5A 121.2 O4—C15—H15C 109.5
C6—C5—H5A 121.2 H15A—C15—H15C 109.5
C1—C6—C5 120.9 (4) H15B—C15—H15C 109.5
C1—C6—H6 119.5 O5—C16—H16A 109.5
C5—C6—H6 119.5 O5—C16—H16B 109.5
N2—C7—C1 120.1 (4) H16A—C16—H16B 109.5
N2—C7—H7 120.0 O5—C16—H16C 109.5
C1—C7—H7 120.0 H16A—C16—H16C 109.5
O3—C8—N3 121.7 (4) H16B—C16—H16C 109.5
O3—C8—C9 121.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O3 0.82 2.03 2.812 (4) 159
O5—H5···N2 0.82 2.61 3.194 (4) 129
N3—H3A···O5i 0.90 (1) 2.02 (2) 2.900 (4) 166 (4)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2522).

References

  1. Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177. [DOI] [PMC free article] [PubMed]
  2. Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260. [DOI] [PMC free article] [PubMed]
  3. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  7. Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem.102, 1677–1683. [DOI] [PubMed]
  8. Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876. [DOI] [PMC free article] [PubMed]
  9. Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883. [DOI] [PMC free article] [PubMed]
  10. Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem.42, 425–429. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]
  13. Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824. [DOI] [PMC free article] [PubMed]
  14. Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett.17, 3774–3777. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004701X/rz2522sup1.cif

e-66-o3240-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004701X/rz2522Isup2.hkl

e-66-o3240-Isup2.hkl (170KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES