Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 20;66(Pt 12):o3255. doi: 10.1107/S1600536810047744

Triethyl­ammonium hydrogen chloranilate

Kazuma Gotoh a, Shinpei Maruyama a, Hiroyuki Ishida a,*
PMCID: PMC3011634  PMID: 21589539

Abstract

In the crystal structure of the title compound (systematic name: triethyl­ammonium 2,5-dichloro-4-hy­droxy-3,6-dioxo­cyclo­hexa-1,4-dien-1-olate), C6H16N+·C6HCl2O4 , two hydrogen chloranilate anions are connected by a pair of bifurcated O—H⋯O hydrogen bonds into a dimeric unit. The triethyl­ammonium cations are linked on both sides of the dimer via bifurcated N—H⋯O hydrogen bonds into a centrosymmetric 2:2 aggregate. The 2:2 aggregates are further linked by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see, for example: Gotoh et al. (2008, 2009); Gotoh & Ishida (2009); Yang (2007). For details of the double π system of chloranilic acid, see: Andersen (1967); Benchekroun & Savariault (1995).graphic file with name e-66-o3255-scheme1.jpg

Experimental

Crystal data

  • C6H16N+·C6HCl2O4

  • M r = 310.18

  • Triclinic, Inline graphic

  • a = 7.6404 (5) Å

  • b = 9.5352 (3) Å

  • c = 11.2976 (5) Å

  • α = 99.9621 (15)°

  • β = 108.732 (3)°

  • γ = 106.536 (3)°

  • V = 714.84 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 180 K

  • 0.42 × 0.35 × 0.25 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.829, T max = 0.891

  • 14757 measured reflections

  • 4176 independent reflections

  • 3631 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.092

  • S = 1.07

  • 4176 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047744/hg2739sup1.cif

e-66-o3255-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047744/hg2739Isup2.hkl

e-66-o3255-Isup2.hkl (204.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.847 (18) 2.411 (15) 2.9805 (12) 125.1 (13)
N1—H1⋯O4 0.847 (18) 2.069 (18) 2.8833 (12) 161.1 (14)
O2—H2⋯O3 0.765 (19) 2.147 (19) 2.6331 (11) 121.9 (17)
O2—H2⋯O3i 0.765 (19) 2.082 (19) 2.7089 (12) 139.4 (19)
C7—H7B⋯O2ii 0.99 2.47 3.2859 (15) 140
C8—H8A⋯O4iii 0.98 2.47 3.3977 (14) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

supplementary crystallographic information

Comment

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh et al., 2008,2009; Gotoh & Ishida, 2009). The crystal structure of bis(hexamethylenetetraminium) chloranilate tetrahydrate has been reported for the tertiary amine–chloranilic acid 2:1 system (Yang, 2007).

In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and triethylamine, and two hydrogen chloranilate anions and two triethylammnoium cations are linked by bifurcated O—H···O and N—H···O hydrogen bonds (Table 1) to afford a centrosymmetric 2:2 aggregate (Fig. 1). The anion shows a characteristic structure of the double π system (Andersen, 1967; Benchekroun & Savariault, 1995) with two long C1—C6 [1.5442 (13) Å] and C3—C4 [1.5063 (13) Å] bonds. The O3—C4 and O4—C6 bonds [1.2529 (11) and 1.2510 (11) Å, respectively] in one π system are almost same and comparable to the O—C bonds in the dianion of bis(hexamethylenetetraminium) chloranilate tetrahydrate (Yang, 2007). On the other hand, the O1—C1 and O2—C3 bonds [1.2199 (12) and 1.3324 (11) Å, respectively] in the other π system correspond to double and single bonds, respectively. The 2:2 aggregates are further linked by intermolecular C—H···O hydrogen bonds, forming a three-dimensional network (Fig. 2).

Experimental

Single crystals were obtained by slow evaporation from an acetonitrile solution (25 ml) of chloranilic acid (97 mg) and triethylamine (42 mg) at room temperature.

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, allowing for free rotation of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The O– and N-bound H atoms were found in a difference Fourier map and refined isotropically. The refined O—H and N—H distances are 0.765 (19) and 0.847 (18) Å, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 35% probability level. The dashed lines indicate O—H···O and N—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 2, -z].

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. The dashed lines indicate O—H···O, N—H···O and C—H···O hydrogen bonds. H atoms of the ethyl groups not involved in the C—H···O hydrogen bonds have been omitted.

Crystal data

C6H16N+·C6HCl2O4 Z = 2
Mr = 310.18 F(000) = 324.00
Triclinic, P1 Dx = 1.441 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 7.6404 (5) Å Cell parameters from 12766 reflections
b = 9.5352 (3) Å θ = 3.0–30.1°
c = 11.2976 (5) Å µ = 0.46 mm1
α = 99.9621 (15)° T = 180 K
β = 108.732 (3)° Block, brown
γ = 106.536 (3)° 0.42 × 0.35 × 0.25 mm
V = 714.84 (6) Å3

Data collection

Rigaku R-AXIS RAPID II diffractometer 3631 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.034
ω scans θmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −10→10
Tmin = 0.829, Tmax = 0.891 k = −13→13
14757 measured reflections l = −15→15
4176 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1133P] where P = (Fo2 + 2Fc2)/3
4176 reflections (Δ/σ)max = 0.001
180 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.05941 (4) 0.44199 (3) −0.17017 (2) 0.03282 (8)
Cl2 0.79265 (4) 0.85112 (3) 0.35611 (2) 0.03113 (8)
O1 0.23295 (13) 0.35023 (9) 0.06660 (8) 0.03546 (18)
O2 0.29888 (11) 0.77018 (9) −0.10218 (8) 0.02849 (16)
O3 0.60830 (11) 0.93820 (8) 0.11497 (7) 0.02933 (16)
O4 0.53520 (12) 0.51893 (9) 0.29193 (8) 0.03090 (17)
N1 0.31226 (12) 0.21786 (9) 0.28996 (8) 0.02410 (16)
C1 0.31746 (14) 0.48352 (11) 0.07566 (9) 0.02382 (18)
C2 0.25857 (14) 0.55307 (11) −0.02828 (9) 0.02340 (18)
C3 0.35511 (14) 0.70234 (11) −0.01071 (9) 0.02249 (18)
C4 0.53096 (14) 0.80246 (10) 0.11283 (9) 0.02232 (17)
C5 0.59095 (14) 0.73644 (11) 0.21385 (9) 0.02326 (18)
C6 0.49384 (14) 0.58366 (11) 0.20508 (9) 0.02325 (18)
C7 0.12245 (15) 0.22545 (12) 0.29816 (11) 0.0307 (2)
H7A 0.0632 0.1399 0.3289 0.037*
H7B 0.0275 0.2125 0.2098 0.037*
C8 0.15318 (17) 0.37395 (13) 0.38885 (11) 0.0323 (2)
H8A 0.2209 0.3765 0.4795 0.048*
H8B 0.0242 0.3827 0.3768 0.048*
H8C 0.2344 0.4594 0.3693 0.048*
C9 0.27183 (18) 0.08580 (12) 0.17789 (11) 0.0320 (2)
H9A 0.3979 0.0937 0.1676 0.038*
H9B 0.1802 0.0938 0.0967 0.038*
C10 0.1828 (2) −0.06935 (13) 0.19402 (15) 0.0435 (3)
H10A 0.2787 −0.0831 0.2686 0.065*
H10B 0.1502 −0.1493 0.1145 0.065*
H10C 0.0619 −0.0762 0.2094 0.065*
C11 0.45590 (16) 0.22080 (13) 0.41806 (11) 0.0313 (2)
H11A 0.3995 0.1271 0.4406 0.038*
H11B 0.4747 0.3098 0.4872 0.038*
C12 0.65531 (19) 0.23066 (17) 0.41462 (15) 0.0461 (3)
H12A 0.6413 0.1348 0.3574 0.069*
H12B 0.7501 0.2480 0.5031 0.069*
H12C 0.7037 0.3156 0.3811 0.069*
H1 0.365 (2) 0.2974 (19) 0.2713 (14) 0.037 (4)*
H2 0.364 (3) 0.855 (2) −0.0717 (17) 0.055 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.03108 (13) 0.02407 (13) 0.03098 (14) 0.00336 (10) 0.00192 (10) 0.00952 (9)
Cl2 0.03405 (14) 0.02543 (13) 0.02406 (13) 0.00126 (10) 0.00727 (10) 0.00770 (9)
O1 0.0406 (4) 0.0198 (4) 0.0355 (4) 0.0021 (3) 0.0070 (3) 0.0134 (3)
O2 0.0304 (4) 0.0204 (4) 0.0303 (4) 0.0052 (3) 0.0067 (3) 0.0140 (3)
O3 0.0342 (4) 0.0184 (3) 0.0333 (4) 0.0056 (3) 0.0114 (3) 0.0128 (3)
O4 0.0353 (4) 0.0252 (4) 0.0283 (4) 0.0050 (3) 0.0091 (3) 0.0153 (3)
N1 0.0257 (4) 0.0190 (4) 0.0277 (4) 0.0046 (3) 0.0123 (3) 0.0098 (3)
C1 0.0266 (4) 0.0192 (4) 0.0267 (4) 0.0069 (3) 0.0112 (3) 0.0101 (3)
C2 0.0235 (4) 0.0195 (4) 0.0255 (4) 0.0059 (3) 0.0079 (3) 0.0088 (3)
C3 0.0244 (4) 0.0203 (4) 0.0257 (4) 0.0082 (3) 0.0113 (3) 0.0109 (3)
C4 0.0252 (4) 0.0183 (4) 0.0262 (4) 0.0076 (3) 0.0124 (3) 0.0092 (3)
C5 0.0260 (4) 0.0193 (4) 0.0230 (4) 0.0051 (3) 0.0094 (3) 0.0083 (3)
C6 0.0261 (4) 0.0206 (4) 0.0249 (4) 0.0069 (3) 0.0117 (3) 0.0103 (3)
C7 0.0232 (4) 0.0292 (5) 0.0376 (5) 0.0063 (4) 0.0120 (4) 0.0104 (4)
C8 0.0319 (5) 0.0344 (6) 0.0357 (5) 0.0164 (4) 0.0144 (4) 0.0131 (4)
C9 0.0415 (6) 0.0214 (5) 0.0327 (5) 0.0066 (4) 0.0187 (4) 0.0070 (4)
C10 0.0536 (7) 0.0218 (5) 0.0571 (8) 0.0075 (5) 0.0306 (6) 0.0101 (5)
C11 0.0301 (5) 0.0330 (5) 0.0312 (5) 0.0120 (4) 0.0103 (4) 0.0127 (4)
C12 0.0337 (6) 0.0490 (8) 0.0561 (8) 0.0214 (5) 0.0146 (5) 0.0117 (6)

Geometric parameters (Å, °)

Cl1—C2 1.7133 (10) C7—H7A 0.9900
Cl2—C5 1.7307 (10) C7—H7B 0.9900
O1—C1 1.2199 (12) C8—H8A 0.9800
O2—C3 1.3324 (11) C8—H8B 0.9800
O2—H2 0.766 (18) C8—H8C 0.9800
O3—C4 1.2529 (11) C9—C10 1.5115 (16)
O4—C6 1.2510 (11) C9—H9A 0.9900
N1—C11 1.4993 (13) C9—H9B 0.9900
N1—C9 1.5033 (13) C10—H10A 0.9800
N1—C7 1.5036 (13) C10—H10B 0.9800
N1—H1 0.847 (16) C10—H10C 0.9800
C1—C2 1.4564 (13) C11—C12 1.5130 (16)
C1—C6 1.5442 (13) C11—H11A 0.9900
C2—C3 1.3490 (13) C11—H11B 0.9900
C3—C4 1.5063 (13) C12—H12A 0.9800
C4—C5 1.4092 (13) C12—H12B 0.9800
C5—C6 1.4036 (13) C12—H12C 0.9800
C7—C8 1.5047 (16)
C3—O2—H2 106.0 (13) C7—C8—H8A 109.5
C11—N1—C9 113.52 (8) C7—C8—H8B 109.5
C11—N1—C7 111.98 (8) H8A—C8—H8B 109.5
C9—N1—C7 111.23 (8) C7—C8—H8C 109.5
C11—N1—H1 107.6 (10) H8A—C8—H8C 109.5
C9—N1—H1 105.4 (10) H8B—C8—H8C 109.5
C7—N1—H1 106.5 (10) N1—C9—C10 114.04 (9)
O1—C1—C2 123.39 (9) N1—C9—H9A 108.7
O1—C1—C6 118.01 (8) C10—C9—H9A 108.7
C2—C1—C6 118.60 (8) N1—C9—H9B 108.7
C3—C2—C1 120.43 (9) C10—C9—H9B 108.7
C3—C2—Cl1 121.32 (7) H9A—C9—H9B 107.6
C1—C2—Cl1 118.21 (7) C9—C10—H10A 109.5
O2—C3—C2 121.58 (9) C9—C10—H10B 109.5
O2—C3—C4 115.99 (8) H10A—C10—H10B 109.5
C2—C3—C4 122.42 (8) C9—C10—H10C 109.5
O3—C4—C5 126.59 (9) H10A—C10—H10C 109.5
O3—C4—C3 115.62 (8) H10B—C10—H10C 109.5
C5—C4—C3 117.79 (8) N1—C11—C12 112.26 (10)
C6—C5—C4 123.24 (9) N1—C11—H11A 109.2
C6—C5—Cl2 118.80 (7) C12—C11—H11A 109.2
C4—C5—Cl2 117.95 (7) N1—C11—H11B 109.2
O4—C6—C5 126.67 (9) C12—C11—H11B 109.2
O4—C6—C1 115.87 (8) H11A—C11—H11B 107.9
C5—C6—C1 117.46 (8) C11—C12—H12A 109.5
N1—C7—C8 112.65 (8) C11—C12—H12B 109.5
N1—C7—H7A 109.1 H12A—C12—H12B 109.5
C8—C7—H7A 109.1 C11—C12—H12C 109.5
N1—C7—H7B 109.1 H12A—C12—H12C 109.5
C8—C7—H7B 109.1 H12B—C12—H12C 109.5
H7A—C7—H7B 107.8
O1—C1—C2—C3 178.24 (10) C3—C4—C5—Cl2 −179.88 (7)
C6—C1—C2—C3 −0.79 (14) C4—C5—C6—O4 −177.80 (10)
O1—C1—C2—Cl1 0.38 (14) Cl2—C5—C6—O4 1.38 (15)
C6—C1—C2—Cl1 −178.65 (7) C4—C5—C6—C1 2.18 (14)
C1—C2—C3—O2 −177.16 (9) Cl2—C5—C6—C1 −178.64 (6)
Cl1—C2—C3—O2 0.63 (14) O1—C1—C6—O4 −0.58 (14)
C1—C2—C3—C4 2.41 (15) C2—C1—C6—O4 178.50 (9)
Cl1—C2—C3—C4 −179.80 (7) O1—C1—C6—C5 179.44 (9)
O2—C3—C4—O3 −1.57 (12) C2—C1—C6—C5 −1.48 (13)
C2—C3—C4—O3 178.84 (9) C11—N1—C7—C8 64.50 (11)
O2—C3—C4—C5 177.84 (8) C9—N1—C7—C8 −167.30 (9)
C2—C3—C4—C5 −1.75 (14) C11—N1—C9—C10 60.54 (13)
O3—C4—C5—C6 178.64 (9) C7—N1—C9—C10 −66.83 (13)
C3—C4—C5—C6 −0.70 (14) C9—N1—C11—C12 59.27 (12)
O3—C4—C5—Cl2 −0.55 (14) C7—N1—C11—C12 −173.75 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.847 (18) 2.411 (15) 2.9805 (12) 125.1 (13)
N1—H1···O4 0.847 (18) 2.069 (18) 2.8833 (12) 161.1 (14)
O2—H2···O3 0.765 (19) 2.147 (19) 2.6331 (11) 121.9 (17)
O2—H2···O3i 0.765 (19) 2.082 (19) 2.7089 (12) 139.4 (19)
C7—H7B···O2ii 0.99 2.47 3.2859 (15) 140
C8—H8A···O4iii 0.98 2.47 3.3977 (14) 158

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2739).

References

  1. Andersen, E. K. (1967). Acta Cryst.22, 196–201.
  2. Benchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186–188.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Gotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550–o553. [DOI] [PubMed]
  5. Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467. [DOI] [PMC free article] [PubMed]
  6. Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273–o277. [DOI] [PubMed]
  7. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yang, D.-J. (2007). Acta Cryst. E63, o2600.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047744/hg2739sup1.cif

e-66-o3255-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047744/hg2739Isup2.hkl

e-66-o3255-Isup2.hkl (204.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES