Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3145. doi: 10.1107/S1600536810045599

(E)-2-(Furan-2-yl­methyl­idene)-8-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one

R Archana a, E Yamuna b, K J Rajendra Prasad b, A Thiruvalluvar a,*, R J Butcher c
PMCID: PMC3011638  PMID: 21589444

Abstract

In the title mol­ecule, C18H15NO2, the carbazole unit is not planar [maximum deviation from mean plane = 0.236 (2) Å]. The pyrrole ring makes dihedral angles of 1.21 (10) and 16.74 (12)° with the benzene and the furan rings, respectively. The cyclo­hexene ring adopts a half-chair conformation. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(10) loops.

Related literature

For the synthesis of hetero-annulated carbazoles, see: Knölker & Reddy (2002). For the derivation of various hetero-annulated carbazoles, see: Sridharan et al. (2008); Danish & Rajendra Prasad (2004, 2005); Periyasami et al. (2008, 2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o3145-scheme1.jpg

Experimental

Crystal data

  • C18H15NO2

  • M r = 277.31

  • Orthorhombic, Inline graphic

  • a = 6.7353 (1) Å

  • b = 16.1393 (3) Å

  • c = 25.9549 (4) Å

  • V = 2821.38 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 295 K

  • 0.44 × 0.28 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.888, T max = 1.000

  • 6361 measured reflections

  • 2736 independent reflections

  • 2201 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.157

  • S = 1.05

  • 2736 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045599/si2306sup1.cif

e-66-o3145-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045599/si2306Isup2.hkl

e-66-o3145-Isup2.hkl (131.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.89 (3) 2.01 (3) 2.8969 (19) 176 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

As a result of their significant potential as therapeutics, interest has grown in the development of methods for the efficient and rapid synthesis of the derivatives of various hetero-annulated carbazoles especially because the current methods, which involve multi-step reactions, lower yields, longer reaction times, and high cost of palladium (Knölker & Reddy (2002)) are unsatisfactory. Herein, therefore, we report the easily accessible synthon (E)-2-(furan-2-yl methylene)-8-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one to derive various hetero-annulated carbazoles (Sridharan et al., (2008); Danish & Rajendra Prasad (2004, 2005); Periyasami et al., (2008, 2009)).

In the title molecule (Scheme I, Fig. 1), C18H15NO2, the carbazole unit is not planar. The pyrrole ring makes dihedral angles of 1.21 (10)° and 16.74 (12)° with the benzene and the furan rings respectively. The cyclohexene ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are q2=0.232 (2) Å, q3=-0.153 (2) Å, Q=0.278 (2) Å, θ=123.4 (4)° and φ=322.6 (5)°. Intermolecular N9—H9···O1 hydrogen bonds form a R22(10) (Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2).

Experimental

An equimolar mixture of 8-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one (0.995 g, 0.005 mol) and furan-2-carbaldehyde (0.41 ml, 0.005 mol) was treated with 25 ml of a 5% ethanolic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from methanol to yield 90% (1.246 g) of the title compound. The pure compound was recrystallized from EtOAc.

Refinement

The H atom bonded to N9 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C18H15NO2 Dx = 1.306 Mg m3
Mr = 277.31 Melting point: 505 K
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3160 reflections
a = 6.7353 (1) Å θ = 4.4–72.5°
b = 16.1393 (3) Å µ = 0.68 mm1
c = 25.9549 (4) Å T = 295 K
V = 2821.38 (8) Å3 Prism, pale-yellow
Z = 8 0.44 × 0.28 × 0.12 mm
F(000) = 1168

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 2736 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2201 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 10.5081 pixels mm-1 θmax = 72.7°, θmin = 5.7°
ω scans h = −5→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −19→13
Tmin = 0.888, Tmax = 1.000 l = −31→31
6361 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0921P)2 + 0.408P] where P = (Fo2 + 2Fc2)/3
2736 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3691 (2) 0.06478 (9) −0.04131 (5) 0.0638 (5)
O11 0.0871 (3) 0.21485 (11) −0.18520 (6) 0.0810 (6)
N9 0.2678 (2) 0.02422 (9) 0.06403 (5) 0.0489 (4)
C1 0.2176 (3) 0.09332 (11) −0.02148 (6) 0.0475 (5)
C2 0.0821 (2) 0.15134 (10) −0.04916 (7) 0.0473 (5)
C3 −0.0829 (3) 0.19426 (12) −0.01982 (8) 0.0605 (6)
C4 −0.1653 (3) 0.14925 (13) 0.02677 (8) 0.0615 (6)
C4A −0.0102 (3) 0.10045 (11) 0.05422 (7) 0.0508 (5)
C4B −0.0102 (3) 0.06700 (11) 0.10466 (7) 0.0537 (6)
C5 −0.1417 (3) 0.07341 (14) 0.14698 (8) 0.0679 (7)
C6 −0.0955 (4) 0.03192 (16) 0.19083 (9) 0.0735 (8)
C7 0.0762 (3) −0.01716 (14) 0.19432 (8) 0.0681 (7)
C8 0.2108 (3) −0.02535 (12) 0.15467 (7) 0.0561 (6)
C8A 0.1646 (3) 0.01922 (10) 0.10952 (6) 0.0497 (5)
C9A 0.1612 (3) 0.07363 (10) 0.03084 (6) 0.0466 (5)
C10 0.1218 (3) 0.16433 (11) −0.09919 (7) 0.0518 (5)
C12 −0.0226 (4) 0.27239 (15) −0.21183 (9) 0.0775 (8)
C13 −0.1434 (4) 0.31065 (15) −0.18050 (9) 0.0736 (8)
C14 −0.1132 (3) 0.27681 (12) −0.13083 (7) 0.0586 (6)
C15 0.0280 (3) 0.21920 (11) −0.13515 (7) 0.0551 (6)
C18 0.3917 (3) −0.07814 (15) 0.15847 (8) 0.0718 (8)
H3A −0.19153 0.20433 −0.04355 0.0725*
H3B −0.03417 0.24784 −0.00856 0.0725*
H4A −0.22223 0.18937 0.05035 0.0738*
H4B −0.27067 0.11228 0.01579 0.0738*
H5 −0.25654 0.10519 0.14480 0.0815*
H6 −0.17930 0.03607 0.21919 0.0882*
H7 0.10015 −0.04552 0.22489 0.0818*
H9 0.382 (4) −0.0012 (13) 0.0577 (9) 0.063 (6)*
H10 0.22576 0.13304 −0.11252 0.0622*
H12 −0.01222 0.28261 −0.24699 0.0931*
H13 −0.23267 0.35233 −0.18921 0.0884*
H14 −0.17937 0.29187 −0.10080 0.0704*
H18A 0.39152 −0.10687 0.19085 0.1077*
H18B 0.50785 −0.04389 0.15617 0.1077*
H18C 0.39214 −0.11766 0.13083 0.1077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0598 (8) 0.0799 (9) 0.0517 (7) 0.0239 (7) 0.0087 (6) 0.0061 (6)
O11 0.0930 (12) 0.0872 (11) 0.0627 (9) 0.0242 (9) 0.0049 (8) 0.0038 (8)
N9 0.0503 (8) 0.0537 (8) 0.0428 (7) 0.0025 (7) 0.0021 (6) −0.0015 (6)
C1 0.0486 (9) 0.0478 (9) 0.0460 (9) 0.0025 (7) 0.0006 (7) −0.0052 (7)
C2 0.0471 (9) 0.0464 (8) 0.0485 (9) 0.0012 (7) −0.0018 (7) −0.0039 (7)
C3 0.0562 (10) 0.0619 (11) 0.0633 (12) 0.0158 (9) 0.0043 (9) 0.0010 (9)
C4 0.0534 (10) 0.0664 (11) 0.0647 (12) 0.0118 (9) 0.0092 (9) −0.0047 (9)
C4A 0.0500 (9) 0.0496 (9) 0.0528 (10) −0.0019 (7) 0.0042 (7) −0.0084 (8)
C4B 0.0550 (10) 0.0557 (10) 0.0503 (10) −0.0077 (8) 0.0080 (8) −0.0092 (8)
C5 0.0656 (12) 0.0755 (13) 0.0627 (12) −0.0084 (10) 0.0200 (10) −0.0104 (10)
C6 0.0797 (15) 0.0856 (15) 0.0553 (12) −0.0232 (12) 0.0225 (11) −0.0094 (11)
C7 0.0816 (15) 0.0771 (13) 0.0457 (10) −0.0289 (12) 0.0024 (10) 0.0011 (9)
C8 0.0672 (11) 0.0566 (10) 0.0444 (9) −0.0180 (9) −0.0046 (8) −0.0018 (8)
C8A 0.0546 (9) 0.0514 (9) 0.0431 (9) −0.0118 (8) 0.0025 (7) −0.0072 (7)
C9A 0.0491 (8) 0.0462 (8) 0.0446 (9) 0.0009 (7) −0.0007 (7) −0.0055 (7)
C10 0.0548 (9) 0.0478 (9) 0.0529 (10) 0.0049 (8) −0.0025 (8) −0.0045 (7)
C12 0.0962 (16) 0.0823 (14) 0.0541 (12) 0.0093 (13) −0.0067 (12) 0.0136 (11)
C13 0.0794 (14) 0.0662 (13) 0.0753 (15) 0.0177 (11) −0.0178 (12) 0.0001 (11)
C14 0.0643 (11) 0.0643 (11) 0.0473 (10) 0.0131 (9) −0.0024 (8) −0.0073 (8)
C15 0.0623 (10) 0.0526 (9) 0.0505 (10) −0.0036 (8) −0.0064 (8) −0.0008 (8)
C18 0.0778 (14) 0.0819 (15) 0.0556 (12) −0.0085 (12) −0.0087 (10) 0.0123 (10)

Geometric parameters (Å, °)

O1—C1 1.232 (2) C8—C8A 1.410 (2)
O11—C12 1.373 (3) C10—C15 1.433 (3)
O11—C15 1.361 (2) C12—C13 1.306 (4)
N9—C8A 1.373 (2) C13—C14 1.415 (3)
N9—C9A 1.376 (2) C14—C15 1.335 (3)
N9—H9 0.89 (3) C3—H3A 0.9700
C1—C2 1.492 (2) C3—H3B 0.9700
C1—C9A 1.446 (2) C4—H4A 0.9700
C2—C3 1.515 (3) C4—H4B 0.9700
C2—C10 1.342 (3) C5—H5 0.9300
C3—C4 1.516 (3) C6—H6 0.9300
C4—C4A 1.490 (3) C7—H7 0.9300
C4A—C9A 1.374 (3) C10—H10 0.9300
C4A—C4B 1.416 (3) C12—H12 0.9300
C4B—C5 1.415 (3) C13—H13 0.9300
C4B—C8A 1.413 (3) C14—H14 0.9300
C5—C6 1.357 (3) C18—H18A 0.9600
C6—C7 1.405 (3) C18—H18B 0.9600
C7—C8 1.378 (3) C18—H18C 0.9600
C8—C18 1.490 (3)
O1···N9 2.8930 (19) C14···H5iii 3.0900
O1···N9i 2.8969 (19) C14···H3A 2.6000
O11···C7ii 3.383 (3) C15···H3A 2.8100
O1···H9 2.78 (2) C18···H9 2.90 (2)
O1···H9i 2.01 (3) C18···H10i 2.9700
O1···H10 2.3600 H3A···C14 2.6000
N9···O1 2.8930 (19) H3A···C15 2.8100
N9···O1i 2.8969 (19) H3A···H14 2.0500
C1···C4Aii 3.529 (3) H3B···C4iii 3.0300
C2···C8Aii 3.577 (2) H3B···H4Aiii 2.5700
C3···C14 3.181 (3) H4A···C2iv 2.8900
C4A···C1ii 3.529 (3) H4A···C10iv 2.8800
C7···O11ii 3.383 (3) H4A···H3Biv 2.5700
C8···C15ii 3.554 (3) H5···C13iv 3.0800
C8···C10ii 3.482 (3) H5···C14iv 3.0900
C8A···C10ii 3.545 (3) H6···C7vii 2.9100
C8A···C2ii 3.577 (2) H6···H7vii 2.4600
C8A···C13iii 3.550 (3) H7···H18A 2.3700
C9A···C9Aii 3.595 (2) H7···H6vi 2.4600
C10···C8Aii 3.545 (3) H9···O1 2.78 (2)
C10···C8ii 3.482 (3) H9···C18 2.90 (2)
C13···C8Aiv 3.550 (3) H9···O1i 2.01 (3)
C14···C3 3.181 (3) H10···O1 2.3600
C15···C8ii 3.554 (3) H10···C18i 2.9700
C2···H4Aiii 2.8900 H10···H18Bi 2.5600
C3···H14 2.7100 H13···C6iv 3.0800
C4···H3Biv 3.0300 H13···C7iv 2.9600
C4A···H14iii 3.0700 H13···C8iv 2.9600
C5···H18Bv 3.0400 H13···C8Aiv 3.0100
C6···H18Bv 3.0700 H14···C3 2.7100
C6···H13iii 3.0800 H14···H3A 2.0500
C7···H6vi 2.9100 H14···C4Aiv 3.0700
C7···H13iii 2.9600 H14···C9Aiv 3.0300
C8···H13iii 2.9600 H18A···H7 2.3700
C8A···H13iii 3.0100 H18B···C5viii 3.0400
C9A···H14iii 3.0300 H18B···C6viii 3.0700
C10···H4Aiii 2.8800 H18B···H10i 2.5600
C13···H5iii 3.0800
C12—O11—C15 106.75 (18) C10—C15—C14 133.61 (18)
C8A—N9—C9A 107.96 (14) O11—C15—C10 117.45 (17)
C9A—N9—H9 127.2 (15) O11—C15—C14 108.94 (17)
C8A—N9—H9 124.8 (15) C2—C3—H3A 108.00
O1—C1—C9A 121.86 (17) C2—C3—H3B 108.00
O1—C1—C2 122.69 (15) C4—C3—H3A 108.00
C2—C1—C9A 115.44 (16) C4—C3—H3B 108.00
C3—C2—C10 124.13 (16) H3A—C3—H3B 107.00
C1—C2—C3 119.58 (16) C3—C4—H4A 109.00
C1—C2—C10 116.23 (15) C3—C4—H4B 109.00
C2—C3—C4 116.77 (16) C4A—C4—H4A 109.00
C3—C4—C4A 112.22 (17) C4A—C4—H4B 109.00
C4B—C4A—C9A 106.75 (16) H4A—C4—H4B 108.00
C4—C4A—C4B 130.07 (18) C4B—C5—H5 121.00
C4—C4A—C9A 122.99 (16) C6—C5—H5 121.00
C5—C4B—C8A 119.49 (17) C5—C6—H6 119.00
C4A—C4B—C5 133.62 (19) C7—C6—H6 119.00
C4A—C4B—C8A 106.89 (16) C6—C7—H7 118.00
C4B—C5—C6 118.1 (2) C8—C7—H7 118.00
C5—C6—C7 121.4 (2) C2—C10—H10 115.00
C6—C7—C8 123.2 (2) C15—C10—H10 115.00
C7—C8—C8A 115.26 (18) O11—C12—H12 125.00
C8A—C8—C18 121.82 (17) C13—C12—H12 125.00
C7—C8—C18 122.92 (18) C12—C13—H13 126.00
N9—C8A—C8 129.29 (17) C14—C13—H13 126.00
C4B—C8A—C8 122.45 (17) C13—C14—H14 126.00
N9—C8A—C4B 108.25 (14) C15—C14—H14 126.00
C1—C9A—C4A 124.50 (17) C8—C18—H18A 109.00
N9—C9A—C1 125.34 (17) C8—C18—H18B 109.00
N9—C9A—C4A 110.15 (14) C8—C18—H18C 109.00
C2—C10—C15 129.69 (17) H18A—C18—H18B 109.00
O11—C12—C13 110.0 (2) H18A—C18—H18C 109.00
C12—C13—C14 107.2 (2) H18B—C18—H18C 109.00
C13—C14—C15 107.15 (18)
C15—O11—C12—C13 0.0 (3) C9A—C4A—C4B—C8A −0.8 (2)
C12—O11—C15—C10 179.89 (19) C4—C4A—C9A—N9 −174.75 (17)
C12—O11—C15—C14 0.2 (2) C4—C4A—C9A—C1 4.0 (3)
C9A—N9—C8A—C4B −0.28 (19) C4B—C4A—C9A—N9 0.6 (2)
C9A—N9—C8A—C8 178.49 (18) C4B—C4A—C9A—C1 179.32 (17)
C8A—N9—C9A—C1 −178.91 (17) C4A—C4B—C5—C6 179.8 (2)
C8A—N9—C9A—C4A −0.2 (2) C8A—C4B—C5—C6 −1.0 (3)
O1—C1—C2—C3 −170.47 (17) C4A—C4B—C8A—N9 0.7 (2)
O1—C1—C2—C10 7.0 (3) C4A—C4B—C8A—C8 −178.22 (17)
C9A—C1—C2—C3 8.5 (2) C5—C4B—C8A—N9 −178.77 (17)
C9A—C1—C2—C10 −174.06 (16) C5—C4B—C8A—C8 2.4 (3)
O1—C1—C9A—N9 1.6 (3) C4B—C5—C6—C7 −0.9 (3)
O1—C1—C9A—C4A −176.90 (18) C5—C6—C7—C8 1.5 (4)
C2—C1—C9A—N9 −177.39 (15) C6—C7—C8—C8A −0.1 (3)
C2—C1—C9A—C4A 4.1 (3) C6—C7—C8—C18 −179.4 (2)
C1—C2—C3—C4 −28.3 (2) C7—C8—C8A—N9 179.62 (18)
C10—C2—C3—C4 154.45 (18) C7—C8—C8A—C4B −1.8 (3)
C1—C2—C10—C15 −176.11 (18) C18—C8—C8A—N9 −1.1 (3)
C3—C2—C10—C15 1.2 (3) C18—C8—C8A—C4B 177.53 (18)
C2—C3—C4—C4A 33.9 (2) C2—C10—C15—O11 −174.38 (19)
C3—C4—C4A—C4B 162.79 (19) C2—C10—C15—C14 5.2 (4)
C3—C4—C4A—C9A −23.0 (3) O11—C12—C13—C14 −0.2 (3)
C4—C4A—C4B—C5 −6.5 (4) C12—C13—C14—C15 0.4 (3)
C4—C4A—C4B—C8A 174.15 (19) C13—C14—C15—O11 −0.4 (2)
C9A—C4A—C4B—C5 178.5 (2) C13—C14—C15—C10 −180.0 (2)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z; (iii) x+1/2, −y+1/2, −z; (iv) x−1/2, −y+1/2, −z; (v) x−1, y, z; (vi) x+1/2, y, −z+1/2; (vii) x−1/2, y, −z+1/2; (viii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9···O1i 0.89 (3) 2.01 (3) 2.8969 (19) 176 (2)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2306).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Danish, I. A. & Rajendra Prasad, K. J. (2004). Indian J. Chem. Sect. B, 43, 618–623.
  4. Danish, I. A. & Rajendra Prasad, K. J. (2005). Collect. Czech. Chem. Commun.70, 223–236.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev.102, 4303–4428. [DOI] [PubMed]
  7. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  8. Periyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2008). Bioorg. Med. Chem. Lett.18, 2342–2345. [DOI] [PubMed]
  9. Periyasami, G., Raghunathan, R., Surendiran, G. & Mathivanan, N. (2009). Eur. J. Med. Chem.44, 959–966. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045599/si2306sup1.cif

e-66-o3145-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045599/si2306Isup2.hkl

e-66-o3145-Isup2.hkl (131.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES