Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3175–o3176. doi: 10.1107/S160053681004626X

The dicyclo­hexyl­amine salt of RG108 (N-phthalyl-l-tryptophan), a potential epigenetic modulator

Julie Braun a, Irving Boittiaux a, Anaelle Tilborg a, Didier Lambert b, Johan Wouters a,*
PMCID: PMC3011641  PMID: 21589471

Abstract

The dicyclo­hexyl­amine salt of RG108 (N-phthalyl-l-tryptophan) co-crystallizes with a water mol­ecule and a disordered mol­ecule of dimethyl­formamide (DMF), viz. dicyclo­hexyl­aminium (S)-2-(1,3-dioxoisoindolin-2-yl)-3-(1H-indol-3-yl)propanoate dimethyl­formamide solvate monohydrate, C12H24N+·C19H13N2O4 ·C3H7NO·H2O. The conformation of the deprotonated compound is constrained by charge-assisted strong hydrogen bonds with the dicyclo­hexyl­aminium ion and a dense hydrogen-bond network involving co-crystallized solvent mol­ecules. The dihedral angle between the fused ring systems in the anion is 58.35 (4)°.

Related literature

For the synthesis and biological evaluation, see: Brueckner et al. (2005).graphic file with name e-66-o3175-scheme1.jpg

Experimental

Crystal data

  • C12H24N+·C19H13N2O4 ·C3H7NO·H2O

  • M r = 606.75

  • Orthorhombic, Inline graphic

  • a = 9.0884 (1) Å

  • b = 15.0206 (3) Å

  • c = 24.4749 (5) Å

  • V = 3341.15 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.55 × 0.04 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.967, T max = 0.981

  • 13362 measured reflections

  • 5552 independent reflections

  • 4936 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.094

  • S = 1.01

  • 5552 reflections

  • 409 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 2160 Friedel pairs

  • Flack parameter: 0.02 (18)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004626X/vm2050sup1.cif

e-66-o3175-sup1.cif (28.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004626X/vm2050Isup2.hkl

e-66-o3175-Isup2.hkl (266.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3B⋯O4i 0.86 (3) 1.88 (3) 2.7309 (19) 169 (2)
N2—H2⋯O5ii 0.86 1.97 2.813 (3) 165
N3—HN3A⋯O3iii 0.99 (3) 1.79 (3) 2.7740 (19) 173 (2)
O5—H5B⋯O99 0.83 (4) 1.84 (4) 2.645 (4) 164 (4)
O5—H5C⋯O1iv 0.89 (4) 1.99 (4) 2.857 (2) 164 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium). Crystals were obtained during work for the Masters thesis of Miss Isabelle Bouhy. The authors thank Bernadette Norberg for her valuable help during the data collection.

supplementary crystallographic information

Comment

RG108 (N-phthalyl-L-tryptophan) is a DNA methyltransferase (DMNT) inhibitor that was discovered by virtual screening (Brueckner et al., 2005). It reactivates tumor suppressor gene expression in tumor cells by DNA demethylation. RG108 also inhibits human tumor cell line proliferation.

Isomer S (C9) of RG108 is obtained starting from L-tryptophan and phthalic anhydride in DMF.

The unprotonated carboxylate group (both C—O bond lenghts are similar with C19—O3 = 1.246 (2) Å and C19—O4 = 1.247 (2) Å) of RG108 is close to the protonated sp3 nitrogen atom (N3) of the amine (intermolecular O···N distances: O3···N3i = 2.774 (2) Å and O4···N3ii = 2.731 (2) Å; i = -1/2 + x,1/2 - y,-z, ii = -1 + x,y,z, see also Table 1).

A water molecule (O5) has co-crystallized and is involved in the stability of the packing as it forms a network of H-bonds connecting the N—H (N2) of the indole ring of RG108 with a carbonyl function (O1) of the phtalimide ring of a symmetry-related molecule and the oxygen atom (O99) of a molecule of DMF solvent (Table 1).

In addition to H-bonding to the water, the extra (disordered) co-crystallized solvent molecule of DMF is thightly packed in a cavity formed by the aromatic heterocycles of RG108 (the phtalimide and the indole rings).

As a consequence of the dense packing (salt bridge, H-bonds and van der Waals interactions), the two aromatic, planar, heterocycles of RG108 are perpendicular (acute angle between the planes defined by the phtalimide and the indole rings = 58.35 (4)°).

Experimental

Synthesis of the compound was made by micro-ave heating of L-tryptophane and phthalic anhydride in DMF by adapting the procedure described by Brueckner et al. (2005).

Crystals were obtained by evaporation at room temperature of a solution in mixture of methylene chloride and methanol (9/1).

Refinement

The two H atoms of the water molecule and the two H atoms on (protonated) nitrogen N5 were located from ΔF Fourier difference maps and their position refined. All other H atoms were placed at idealized positions and allowed to ride on their parent atoms.

Atoms of a DMF molecule were refined isotropically. Disorder has been taken into account by refining two sets of coordinates (0.7 and 0.3 occupancies respectively) for each atom of the DMF molecule. Bond lengths and valence angles were restrained to be similar in both disordered parts.

Figures

Fig. 1.

Fig. 1.

ORTEP view (with atom numbering) of the title compound. Only selected H atoms have been retained for clarity (on the chiral carbon, on the protonated nitrogen, and H involved in H-bonds). Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Crystal data

C12H24N+·C19H13N2O4·C3H7NO·H2O F(000) = 1304.0
Mr = 606.75 Dx = 1.206 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2ab Cell parameters from 7270 reflections
a = 9.0884 (1) Å θ = 3.5–67.3°
b = 15.0206 (3) Å µ = 0.67 mm1
c = 24.4749 (5) Å T = 293 K
V = 3341.15 (10) Å3 Needle, yellow
Z = 4 0.55 × 0.04 × 0.03 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Cu) detector 5552 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 4936 reflections with I > 2σ(I)
mirror Rint = 0.026
Detector resolution: 10.3712 pixels mm-1 θmax = 67.4°, θmin = 3.5°
ω scans h = −10→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −15→17
Tmin = 0.967, Tmax = 0.981 l = −28→29
13362 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0611P)2 + 0.0400sinθ/λ] where P = 0.33333Fo2 + 0.66667Fc2
S = 1.01 (Δ/σ)max < 0.001
5552 reflections Δρmax = 0.30 e Å3
409 parameters Δρmin = −0.27 e Å3
8 restraints Absolute structure: Flack (1983), 2160 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.28198 (19) 0.08359 (12) 0.15901 (7) 0.0255 (4)
C2 0.15124 (19) 0.04587 (13) 0.18771 (7) 0.0281 (4)
C3 0.0899 (2) −0.03769 (15) 0.18579 (8) 0.0371 (4)
H3 0.1306 −0.0828 0.1646 0.044*
C4 −0.0364 (2) −0.05175 (17) 0.21717 (10) 0.0471 (6)
H4 −0.0803 −0.1077 0.2171 0.056*
C5 −0.0976 (2) 0.01558 (18) 0.24826 (9) 0.0466 (6)
H5 −0.1820 0.0041 0.2686 0.056*
C6 −0.0356 (2) 0.09991 (17) 0.24977 (9) 0.0409 (5)
H6 −0.0774 0.1455 0.2703 0.049*
C7 0.09121 (18) 0.11355 (14) 0.21952 (7) 0.0293 (4)
C8 0.18476 (18) 0.19374 (14) 0.21386 (7) 0.0276 (4)
C9 0.40737 (17) 0.23259 (12) 0.15742 (7) 0.0245 (4)
H9 0.3868 0.2900 0.1749 0.029*
C10 0.56294 (17) 0.20499 (14) 0.17540 (7) 0.0283 (4)
H10A 0.5840 0.1463 0.1609 0.034*
H10B 0.6334 0.2461 0.1596 0.034*
C11 0.58403 (18) 0.20322 (13) 0.23613 (8) 0.0300 (4)
C12 0.6295 (2) 0.27212 (15) 0.26820 (8) 0.0382 (5)
H12 0.6514 0.3289 0.2553 0.046*
C13 0.5969 (2) 0.15904 (15) 0.32564 (8) 0.0365 (4)
C14 0.5908 (2) 0.10309 (17) 0.37118 (9) 0.0444 (5)
H14 0.6146 0.1238 0.4059 0.053*
C15 0.5484 (2) 0.01611 (17) 0.36273 (9) 0.0464 (6)
H15 0.5429 −0.0226 0.3923 0.056*
C16 0.5136 (2) −0.01489 (15) 0.31049 (9) 0.0407 (5)
H16 0.4854 −0.0739 0.3059 0.049*
C17 0.52024 (19) 0.04037 (14) 0.26543 (8) 0.0329 (4)
H17 0.4971 0.0188 0.2309 0.039*
C18 0.56222 (18) 0.12900 (14) 0.27259 (7) 0.0297 (4)
C19 0.39345 (18) 0.24740 (12) 0.09508 (7) 0.0251 (4)
C20 1.0315 (2) 0.06650 (15) 0.02751 (8) 0.0362 (4)
H20A 1.1333 0.0726 0.0389 0.043*
H20B 1.0264 0.0797 −0.0112 0.043*
C21 0.9818 (3) −0.02937 (15) 0.03696 (10) 0.0466 (5)
H21A 1.0377 −0.0688 0.0134 0.056*
H21B 1.0017 −0.0460 0.0745 0.056*
C22 0.8190 (3) −0.04061 (16) 0.02532 (10) 0.0460 (5)
H22A 0.7894 −0.1011 0.0338 0.055*
H22B 0.8004 −0.0301 −0.0132 0.055*
C23 0.7290 (2) 0.02426 (15) 0.05937 (9) 0.0417 (5)
H23A 0.6254 0.0169 0.0510 0.050*
H23B 0.7431 0.0114 0.0979 0.050*
C24 0.7748 (2) 0.11973 (14) 0.04766 (8) 0.0325 (4)
H24A 0.7539 0.1338 0.0098 0.039*
H24B 0.7179 0.1598 0.0704 0.039*
C25 0.93764 (19) 0.13371 (13) 0.05872 (7) 0.0277 (4)
H25 0.9559 0.1267 0.0979 0.033*
C26 0.90346 (18) 0.30325 (13) 0.06517 (7) 0.0265 (4)
H26 0.7980 0.2957 0.0582 0.032*
C27 0.9557 (2) 0.38741 (14) 0.03688 (8) 0.0350 (4)
H27A 0.9352 0.3831 −0.0019 0.042*
H27B 1.0613 0.3931 0.0414 0.042*
C28 0.8803 (3) 0.46978 (15) 0.06000 (9) 0.0430 (5)
H28A 0.9198 0.5225 0.0425 0.052*
H28B 0.7758 0.4671 0.0521 0.052*
C29 0.9029 (2) 0.47659 (15) 0.12145 (9) 0.0424 (5)
H29A 1.0063 0.4862 0.1293 0.051*
H29B 0.8480 0.5270 0.1356 0.051*
C30 0.8515 (2) 0.39192 (16) 0.14926 (9) 0.0409 (5)
H30A 0.7461 0.3857 0.1443 0.049*
H30B 0.8706 0.3963 0.1882 0.049*
C31 0.92799 (19) 0.30959 (14) 0.12677 (7) 0.0317 (4)
H31A 0.8892 0.2568 0.1445 0.038*
H31B 1.0326 0.3129 0.1344 0.038*
N1 0.29621 (15) 0.17046 (10) 0.17706 (6) 0.0251 (3)
N2 0.6388 (2) 0.24668 (12) 0.32209 (7) 0.0429 (4)
H2 0.6661 0.2799 0.3489 0.051*
N3 0.98457 (16) 0.22521 (11) 0.04155 (6) 0.0269 (3)
O1 0.36330 (14) 0.04770 (9) 0.12646 (6) 0.0342 (3)
O2 0.17295 (15) 0.26576 (10) 0.23543 (6) 0.0374 (3)
O3 0.50423 (13) 0.27765 (10) 0.07154 (5) 0.0331 (3)
O4 0.27256 (13) 0.23090 (11) 0.07320 (6) 0.0383 (3)
O5 0.1772 (2) 0.13211 (12) 0.59148 (8) 0.0539 (4)
O99 0.0737 (4) 0.1983 (3) 0.49899 (14) 0.0750 (9)* 0.70
N99 0.1552 (5) 0.2310 (3) 0.41554 (16) 0.0510 (11)* 0.70
C88 0.1620 (4) 0.2142 (3) 0.46712 (15) 0.0517 (8)* 0.70
H88 0.2571 0.2153 0.4812 0.062* 0.70
C96 0.2644 (6) 0.2521 (4) 0.3781 (2) 0.0796 (13)* 0.70
H96A 0.2211 0.2610 0.3428 0.119* 0.70
H96B 0.3342 0.2042 0.3762 0.119* 0.70
H96C 0.3136 0.3056 0.3894 0.119* 0.70
C97 −0.0037 (4) 0.2278 (3) 0.39149 (17) 0.0656 (10)* 0.70
H97A −0.0004 0.2411 0.3531 0.098* 0.70
H97B −0.0642 0.2709 0.4098 0.098* 0.70
H97C −0.0443 0.1694 0.3968 0.098* 0.70
O99B 0.0109 (6) 0.2045 (4) 0.5007 (2) 0.0357 (11)* 0.30
N99B 0.1149 (8) 0.2235 (5) 0.4188 (3) 0.0317 (18)* 0.30
C88B 0.0171 (12) 0.2275 (8) 0.4510 (4) 0.071 (3)* 0.30
H88B −0.0696 0.2516 0.4373 0.085* 0.30
C96B 0.2691 (11) 0.2064 (7) 0.4520 (4) 0.067 (2)* 0.30
H96D 0.3491 0.2029 0.4265 0.100* 0.30
H96E 0.2624 0.1517 0.4721 0.100* 0.30
H96F 0.2860 0.2548 0.4769 0.100* 0.30
C97B 0.1649 (19) 0.2484 (12) 0.3692 (7) 0.112 (5)* 0.30
H97D 0.2612 0.2238 0.3633 0.168* 0.30
H97E 0.1701 0.3122 0.3674 0.168* 0.30
H97F 0.0992 0.2270 0.3414 0.168* 0.30
H5B 0.133 (4) 0.145 (3) 0.5631 (15) 0.072 (11)*
H5C 0.150 (4) 0.076 (3) 0.5979 (13) 0.072 (10)*
HN3B 1.077 (3) 0.2319 (16) 0.0481 (9) 0.033 (6)*
HN3A 0.984 (3) 0.2272 (17) 0.0012 (11) 0.046 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0274 (8) 0.0247 (9) 0.0245 (8) −0.0008 (8) −0.0019 (7) −0.0009 (7)
C2 0.0286 (8) 0.0303 (10) 0.0254 (8) −0.0058 (8) −0.0033 (7) 0.0066 (7)
C3 0.0407 (10) 0.0347 (11) 0.0358 (10) −0.0087 (9) −0.0072 (8) 0.0085 (8)
C4 0.0443 (11) 0.0470 (14) 0.0499 (12) −0.0198 (11) −0.0082 (10) 0.0180 (11)
C5 0.0300 (9) 0.0640 (16) 0.0456 (12) −0.0128 (11) 0.0021 (8) 0.0228 (12)
C6 0.0299 (9) 0.0547 (14) 0.0382 (11) −0.0004 (10) 0.0050 (8) 0.0111 (10)
C7 0.0259 (8) 0.0376 (11) 0.0242 (9) −0.0010 (8) −0.0007 (7) 0.0052 (8)
C8 0.0257 (8) 0.0340 (10) 0.0231 (8) 0.0020 (8) 0.0004 (6) 0.0010 (7)
C9 0.0256 (8) 0.0243 (9) 0.0235 (8) −0.0044 (7) 0.0028 (6) 0.0002 (7)
C10 0.0239 (7) 0.0330 (10) 0.0279 (8) −0.0048 (8) −0.0010 (7) 0.0047 (8)
C11 0.0274 (8) 0.0323 (10) 0.0303 (9) −0.0040 (8) −0.0033 (7) 0.0067 (8)
C12 0.0496 (11) 0.0329 (11) 0.0320 (10) −0.0066 (9) −0.0117 (9) 0.0063 (8)
C13 0.0405 (9) 0.0386 (12) 0.0305 (9) −0.0040 (9) −0.0032 (8) 0.0047 (8)
C14 0.0525 (11) 0.0517 (14) 0.0291 (10) −0.0029 (11) −0.0046 (9) 0.0090 (10)
C15 0.0509 (12) 0.0486 (14) 0.0397 (11) −0.0048 (11) −0.0007 (9) 0.0212 (10)
C16 0.0394 (10) 0.0349 (12) 0.0479 (12) −0.0061 (9) −0.0029 (9) 0.0128 (9)
C17 0.0296 (8) 0.0345 (11) 0.0345 (10) −0.0036 (8) −0.0009 (7) 0.0025 (8)
C18 0.0266 (8) 0.0331 (11) 0.0293 (9) −0.0016 (8) −0.0010 (7) 0.0037 (8)
C19 0.0260 (8) 0.0242 (9) 0.0251 (8) 0.0023 (7) −0.0001 (6) 0.0000 (7)
C20 0.0339 (9) 0.0391 (12) 0.0355 (10) 0.0120 (9) −0.0027 (8) −0.0033 (9)
C21 0.0586 (13) 0.0366 (13) 0.0445 (12) 0.0161 (11) −0.0031 (10) −0.0029 (10)
C22 0.0613 (13) 0.0301 (11) 0.0465 (12) −0.0004 (11) 0.0006 (10) 0.0005 (9)
C23 0.0467 (11) 0.0334 (12) 0.0450 (12) −0.0015 (10) 0.0041 (9) 0.0059 (9)
C24 0.0297 (8) 0.0311 (11) 0.0368 (10) 0.0033 (8) 0.0038 (7) 0.0022 (8)
C25 0.0309 (9) 0.0303 (10) 0.0219 (8) 0.0057 (8) −0.0011 (7) 0.0008 (7)
C26 0.0237 (7) 0.0289 (9) 0.0268 (8) 0.0011 (7) −0.0005 (6) −0.0033 (7)
C27 0.0409 (10) 0.0352 (11) 0.0290 (9) −0.0018 (9) −0.0006 (8) 0.0002 (8)
C28 0.0516 (12) 0.0326 (11) 0.0448 (11) −0.0035 (10) −0.0019 (9) −0.0012 (9)
C29 0.0456 (10) 0.0364 (12) 0.0452 (11) −0.0059 (10) 0.0020 (9) −0.0125 (10)
C30 0.0449 (10) 0.0424 (12) 0.0355 (11) −0.0055 (10) 0.0090 (9) −0.0106 (9)
C31 0.0295 (8) 0.0382 (11) 0.0274 (9) −0.0010 (8) 0.0012 (7) −0.0028 (8)
N1 0.0267 (7) 0.0236 (8) 0.0251 (7) −0.0033 (6) 0.0035 (6) −0.0021 (6)
N2 0.0647 (11) 0.0360 (10) 0.0280 (8) −0.0077 (9) −0.0123 (8) 0.0022 (7)
N3 0.0224 (7) 0.0340 (9) 0.0244 (8) 0.0040 (6) −0.0023 (6) −0.0013 (6)
O1 0.0384 (6) 0.0295 (7) 0.0346 (7) −0.0011 (6) 0.0070 (6) −0.0068 (6)
O2 0.0414 (7) 0.0334 (8) 0.0374 (7) 0.0041 (6) 0.0071 (6) −0.0081 (6)
O3 0.0316 (6) 0.0428 (8) 0.0247 (6) −0.0066 (6) 0.0013 (5) 0.0054 (6)
O4 0.0276 (6) 0.0523 (9) 0.0349 (7) −0.0029 (6) −0.0065 (5) 0.0039 (6)
O5 0.0860 (13) 0.0317 (9) 0.0442 (10) 0.0013 (9) 0.0080 (9) 0.0005 (7)

Geometric parameters (Å, °)

C1—O1 1.213 (2) C23—H23B 0.9700
C1—N1 1.384 (2) C24—C25 1.519 (3)
C1—C2 1.492 (3) C24—H24A 0.9700
C2—C3 1.374 (3) C24—H24B 0.9700
C2—C7 1.392 (3) C25—N3 1.499 (3)
C3—C4 1.397 (3) C25—H25 0.9800
C3—H3 0.9300 C26—N3 1.500 (2)
C4—C5 1.383 (4) C26—C27 1.517 (3)
C4—H4 0.9300 C26—C31 1.527 (2)
C5—C6 1.387 (4) C26—H26 0.9800
C5—H5 0.9300 C27—C28 1.524 (3)
C6—C7 1.385 (3) C27—H27A 0.9700
C6—H6 0.9300 C27—H27B 0.9700
C7—C8 1.481 (3) C28—C29 1.522 (3)
C8—O2 1.209 (2) C28—H28A 0.9700
C8—N1 1.400 (2) C28—H28B 0.9700
C9—N1 1.457 (2) C29—C30 1.516 (3)
C9—C10 1.538 (2) C29—H29A 0.9700
C9—C19 1.547 (2) C29—H29B 0.9700
C9—H9 0.9800 C30—C31 1.522 (3)
C10—C11 1.499 (3) C30—H30A 0.9700
C10—H10A 0.9700 C30—H30B 0.9700
C10—H10B 0.9700 C31—H31A 0.9700
C11—C12 1.363 (3) C31—H31B 0.9700
C11—C18 1.442 (3) N2—H2 0.8600
C12—N2 1.376 (3) N3—HN3B 0.86 (2)
C12—H12 0.9300 N3—HN3A 0.99 (3)
C13—N2 1.373 (3) O5—H5B 0.82 (4)
C13—C14 1.397 (3) O5—H5C 0.89 (4)
C13—C18 1.410 (3) O99—C88 1.145 (5)
C14—C15 1.378 (4) N99—C88 1.289 (5)
C14—H14 0.9300 N99—C96 1.387 (7)
C15—C16 1.397 (3) N99—C97 1.561 (6)
C15—H15 0.9300 C88—H88 0.9300
C16—C17 1.381 (3) C96—H96A 0.9600
C16—H16 0.9300 C96—H96B 0.9600
C17—C18 1.396 (3) C96—H96C 0.9600
C17—H17 0.9300 C97—H97A 0.9600
C19—O3 1.246 (2) C97—H97B 0.9600
C19—O4 1.247 (2) C97—H97C 0.9600
C20—C25 1.527 (3) O99B—C88B 1.266 (12)
C20—C21 1.527 (3) N99B—C88B 1.189 (13)
C20—H20A 0.9700 N99B—C97B 1.350 (18)
C20—H20B 0.9700 N99B—C96B 1.640 (12)
C21—C22 1.517 (3) C88B—H88B 0.9300
C21—H21A 0.9700 C96B—H96D 0.9600
C21—H21B 0.9700 C96B—H96E 0.9600
C22—C23 1.521 (3) C96B—H96F 0.9600
C22—H22A 0.9700 C97B—H97D 0.9600
C22—H22B 0.9700 C97B—H97E 0.9600
C23—C24 1.521 (3) C97B—H97F 0.9600
C23—H23A 0.9700
O1—C1—N1 124.88 (17) H24A—C24—H24B 108.0
O1—C1—C2 128.72 (18) N3—C25—C24 110.73 (15)
N1—C1—C2 106.39 (15) N3—C25—C20 107.89 (15)
C3—C2—C7 121.81 (17) C24—C25—C20 111.34 (16)
C3—C2—C1 130.83 (19) N3—C25—H25 108.9
C7—C2—C1 107.35 (16) C24—C25—H25 108.9
C2—C3—C4 116.9 (2) C20—C25—H25 108.9
C2—C3—H3 121.5 N3—C26—C27 108.74 (14)
C4—C3—H3 121.5 N3—C26—C31 110.93 (15)
C5—C4—C3 121.5 (2) C27—C26—C31 110.66 (16)
C5—C4—H4 119.2 N3—C26—H26 108.8
C3—C4—H4 119.2 C27—C26—H26 108.8
C4—C5—C6 121.27 (19) C31—C26—H26 108.8
C4—C5—H5 119.4 C26—C27—C28 111.49 (16)
C6—C5—H5 119.4 C26—C27—H27A 109.3
C7—C6—C5 117.3 (2) C28—C27—H27A 109.3
C7—C6—H6 121.3 C26—C27—H27B 109.3
C5—C6—H6 121.3 C28—C27—H27B 109.3
C6—C7—C2 121.15 (19) H27A—C27—H27B 108.0
C6—C7—C8 130.40 (19) C29—C28—C27 111.16 (18)
C2—C7—C8 108.46 (15) C29—C28—H28A 109.4
O2—C8—N1 124.68 (17) C27—C28—H28A 109.4
O2—C8—C7 129.50 (17) C29—C28—H28B 109.4
N1—C8—C7 105.82 (16) C27—C28—H28B 109.4
N1—C9—C10 111.75 (15) H28A—C28—H28B 108.0
N1—C9—C19 111.15 (14) C30—C29—C28 110.23 (18)
C10—C9—C19 113.34 (13) C30—C29—H29A 109.6
N1—C9—H9 106.7 C28—C29—H29A 109.6
C10—C9—H9 106.7 C30—C29—H29B 109.6
C19—C9—H9 106.7 C28—C29—H29B 109.6
C11—C10—C9 113.96 (14) H29A—C29—H29B 108.1
C11—C10—H10A 108.8 C29—C30—C31 112.23 (16)
C9—C10—H10A 108.8 C29—C30—H30A 109.2
C11—C10—H10B 108.8 C31—C30—H30A 109.2
C9—C10—H10B 108.8 C29—C30—H30B 109.2
H10A—C10—H10B 107.7 C31—C30—H30B 109.2
C12—C11—C18 105.80 (16) H30A—C30—H30B 107.9
C12—C11—C10 126.61 (18) C30—C31—C26 109.94 (16)
C18—C11—C10 127.58 (18) C30—C31—H31A 109.7
C11—C12—N2 111.09 (18) C26—C31—H31A 109.7
C11—C12—H12 124.5 C30—C31—H31B 109.7
N2—C12—H12 124.5 C26—C31—H31B 109.7
N2—C13—C14 129.6 (2) H31A—C31—H31B 108.2
N2—C13—C18 108.08 (17) C1—N1—C8 111.92 (15)
C14—C13—C18 122.2 (2) C1—N1—C9 124.30 (14)
C15—C14—C13 117.5 (2) C8—N1—C9 123.65 (15)
C15—C14—H14 121.3 C13—N2—C12 108.05 (17)
C13—C14—H14 121.3 C13—N2—H2 126.0
C14—C15—C16 121.1 (2) C12—N2—H2 126.0
C14—C15—H15 119.4 C25—N3—C26 117.94 (14)
C16—C15—H15 119.4 C25—N3—HN3B 109.4 (16)
C17—C16—C15 121.4 (2) C26—N3—HN3B 108.4 (16)
C17—C16—H16 119.3 C25—N3—HN3A 107.8 (15)
C15—C16—H16 119.3 C26—N3—HN3A 110.9 (15)
C16—C17—C18 118.99 (19) HN3B—N3—HN3A 101 (2)
C16—C17—H17 120.5 H5B—O5—H5C 103 (3)
C18—C17—H17 120.5 C88—N99—C96 131.1 (4)
C17—C18—C13 118.79 (18) C88—N99—C97 114.1 (4)
C17—C18—C11 134.22 (18) C96—N99—C97 114.8 (4)
C13—C18—C11 106.97 (17) O99—C88—N99 132.4 (4)
O3—C19—O4 125.87 (17) O99—C88—H88 113.8
O3—C19—C9 116.25 (15) N99—C88—H88 113.8
O4—C19—C9 117.84 (15) N99—C96—H96A 109.5
C25—C20—C21 112.50 (17) N99—C96—H96B 109.5
C25—C20—H20A 109.1 H96A—C96—H96B 109.5
C21—C20—H20A 109.1 N99—C96—H96C 109.5
C25—C20—H20B 109.1 H96A—C96—H96C 109.5
C21—C20—H20B 109.1 H96B—C96—H96C 109.5
H20A—C20—H20B 107.8 N99—C97—H97A 109.5
C22—C21—C20 111.41 (18) N99—C97—H97B 109.5
C22—C21—H21A 109.3 H97A—C97—H97B 109.5
C20—C21—H21A 109.3 N99—C97—H97C 109.5
C22—C21—H21B 109.3 H97A—C97—H97C 109.5
C20—C21—H21B 109.3 H97B—C97—H97C 109.5
H21A—C21—H21B 108.0 C88B—N99B—C97B 146.5 (11)
C21—C22—C23 110.53 (19) C88B—N99B—C96B 108.5 (8)
C21—C22—H22A 109.5 C97B—N99B—C96B 101.6 (10)
C23—C22—H22A 109.5 N99B—C88B—O99B 131.1 (10)
C21—C22—H22B 109.5 N99B—C88B—H88B 114.5
C23—C22—H22B 109.5 O99B—C88B—H88B 114.5
H22A—C22—H22B 108.1 N99B—C96B—H96D 109.5
C24—C23—C22 110.70 (17) N99B—C96B—H96E 109.5
C24—C23—H23A 109.5 H96D—C96B—H96E 109.5
C22—C23—H23A 109.5 N99B—C96B—H96F 109.5
C24—C23—H23B 109.5 H96D—C96B—H96F 109.5
C22—C23—H23B 109.5 H96E—C96B—H96F 109.5
H23A—C23—H23B 108.1 N99B—C97B—H97D 109.5
C25—C24—C23 111.33 (16) N99B—C97B—H97E 109.5
C25—C24—H24A 109.4 H97D—C97B—H97E 109.5
C23—C24—H24A 109.4 N99B—C97B—H97F 109.5
C25—C24—H24B 109.4 H97D—C97B—H97F 109.5
C23—C24—H24B 109.4 H97E—C97B—H97F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—HN3B···O4i 0.86 (3) 1.88 (3) 2.7309 (19) 169 (2)
N2—H2···O5ii 0.86 1.97 2.813 (3) 165
N3—HN3A···O3iii 0.99 (3) 1.79 (3) 2.7740 (19) 173 (2)
O5—H5B···O99 0.83 (4) 1.84 (4) 2.645 (4) 164 (4)
O5—H5C···O1iv 0.89 (4) 1.99 (4) 2.857 (2) 164 (3)

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z; (iv) −x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2050).

References

  1. Brueckner, B., Boy, R. G., Siedlecki, P., Munsch, T., Kliem, H. C., Zielenkiewicz, P., Suhai, S., Wiessler, M. & Lyko, F. (2005). Cancer Res.65, 6305–6311. [DOI] [PubMed]
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004626X/vm2050sup1.cif

e-66-o3175-sup1.cif (28.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004626X/vm2050Isup2.hkl

e-66-o3175-Isup2.hkl (266.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES