Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3147. doi: 10.1107/S1600536810045800

3-(Pyridin-4-ylmeth­oxy)phenol

Liying Han a, Hu Zang b,*, Dajun Sun c
PMCID: PMC3011644  PMID: 21589446

Abstract

In the title compound, C12H11NO2, the phenolic ring is inclined at an angle of 32.70 (1)° with respect to the pyridine ring. In the crystal, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into C(11) chains along [001].

Related literature

For a related structure, see: Yumoto et al. (2008).graphic file with name e-66-o3147-scheme1.jpg

Experimental

Crystal data

  • C12H11NO2

  • M r = 201.22

  • Monoclinic, Inline graphic

  • a = 6.6551 (6) Å

  • b = 9.1160 (8) Å

  • c = 17.0039 (15) Å

  • β = 100.501 (1)°

  • V = 1014.31 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.930, T max = 0.980

  • 5411 measured reflections

  • 1981 independent reflections

  • 1310 reflections with I > 2σ(I)

  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.091

  • S = 0.89

  • 1981 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045800/ng5062sup1.cif

e-66-o3147-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045800/ng5062Isup2.hkl

e-66-o3147-Isup2.hkl (95.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.95 (2) 1.75 (2) 2.6991 (17) 174 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank The China–Japan Union Hospital of Jilin University for supporting this work.

supplementary crystallographic information

Comment

Pyridine and its derivatives represent one of the most active classes of compounds possessing a wide application of biological activities, such as stent in intestinal or biliary fields. During the past years, considerable efforts have been paid to demonstrate the efficacy of pyridine derivatives including antibacterial, antifungal, herbicidal, insecticidal and other biological activities. A new pyridine derivatives molecule is synthesized, with the aim of studying its single-crystal structure.

The title molecule (Fig. 1) consists of a phenol moiety (O1/C1—C6) and a methoxy moiety (O2/C7) attached to a pyridine ring (N1/C8—C12). The pyridine ring is inclined at an angle of 32.70 (1)° with the phenol ring. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Yumoto et al., 2008). In the crystal structure, the crystal packing is consolidated by intermolecular O1—H1A···N1 hydrogen bonds linking the molecules into one linear structure.

Experimental

A mixture of 1,3-dihydroxybenzene (1.1 g, 10 mmol), 4-chloromethlpyridine hydrochloride (1.64 g, 10 mmol), and NaOH (1.6 g, 40 mmol) in acetonitrile (50 ml) was refluxed under nitrogen with stirring for 24 h. After cooling to room temperature, the reactant was filtered, and the residue was washed with acetonitrile several times. The mixed filtrate was slowly evaporated and colorless crystals were obtained.

Refinement

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms. H atoms bonded to O atoms were located in a difference Fourier map.

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C12H11NO2 F(000) = 424
Mr = 201.22 Dx = 1.318 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1981 reflections
a = 6.6551 (6) Å θ = 1.9–28.3°
b = 9.1160 (8) Å µ = 0.09 mm1
c = 17.0039 (15) Å T = 293 K
β = 100.501 (1)° Block, colorless
V = 1014.31 (16) Å3 0.28 × 0.24 × 0.22 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer 1981 independent reflections
Radiation source: fine-focus sealed tube 1310 reflections with I > 2σ(I)
graphite Rint = 0.098
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.930, Tmax = 0.980 k = −9→11
5411 measured reflections l = −15→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0212P)2] where P = (Fo2 + 2Fc2)/3
1981 reflections (Δ/σ)max = 0.001
140 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7272 (2) 0.82817 (15) 1.01329 (9) 0.0343 (4)
O1 −0.50233 (18) 0.67160 (13) 0.65242 (7) 0.0385 (3)
O2 0.13905 (16) 0.82363 (12) 0.78584 (7) 0.0357 (3)
H1A −0.601 (3) 0.678 (2) 0.6047 (13) 0.073 (7)*
C7 0.3149 (2) 0.91479 (18) 0.79342 (10) 0.0317 (4)
H7A 0.2748 1.0170 0.7939 0.038*
H7B 0.3829 0.8995 0.7482 0.038*
C6 −0.1795 (2) 0.75328 (18) 0.71613 (9) 0.0296 (4)
H6 −0.1743 0.6758 0.7520 0.036*
C5 −0.0183 (2) 0.85103 (18) 0.72303 (9) 0.0295 (4)
C12 0.3904 (2) 0.81807 (17) 0.93485 (10) 0.0320 (4)
H12 0.2540 0.7921 0.9316 0.038*
C8 0.4572 (2) 0.87800 (17) 0.86953 (10) 0.0271 (4)
C11 0.5288 (3) 0.79727 (18) 1.00500 (11) 0.0345 (4)
H11 0.4809 0.7596 1.0489 0.041*
C1 −0.3484 (2) 0.77025 (19) 0.65603 (10) 0.0305 (4)
C2 −0.3563 (3) 0.88767 (19) 0.60343 (10) 0.0356 (4)
H2 −0.4703 0.9013 0.5635 0.043*
C9 0.6626 (2) 0.90938 (18) 0.87728 (10) 0.0313 (4)
H9 0.7143 0.9480 0.8344 0.038*
C4 −0.0223 (2) 0.96653 (18) 0.67026 (10) 0.0348 (4)
H4 0.0871 1.0313 0.6743 0.042*
C3 −0.1947 (2) 0.98324 (19) 0.61087 (10) 0.0384 (5)
H3 −0.2005 1.0613 0.5753 0.046*
C10 0.7902 (2) 0.88286 (18) 0.94908 (10) 0.0346 (4)
H10 0.9283 0.9043 0.9532 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0290 (8) 0.0365 (9) 0.0345 (9) 0.0046 (6) −0.0018 (7) −0.0058 (7)
O1 0.0276 (7) 0.0540 (8) 0.0305 (7) −0.0094 (6) −0.0038 (6) 0.0043 (6)
O2 0.0296 (7) 0.0405 (7) 0.0315 (7) −0.0063 (5) −0.0091 (5) 0.0046 (5)
C7 0.0266 (9) 0.0371 (10) 0.0304 (10) −0.0015 (8) 0.0025 (8) −0.0030 (8)
C6 0.0292 (9) 0.0352 (10) 0.0231 (9) 0.0006 (8) 0.0014 (8) 0.0026 (8)
C5 0.0266 (9) 0.0365 (10) 0.0231 (9) 0.0017 (8) −0.0012 (7) −0.0033 (8)
C12 0.0228 (9) 0.0375 (11) 0.0345 (10) 0.0018 (7) 0.0020 (8) −0.0024 (8)
C8 0.0237 (9) 0.0280 (9) 0.0283 (9) 0.0033 (7) 0.0012 (7) −0.0063 (7)
C11 0.0329 (10) 0.0388 (11) 0.0315 (10) 0.0025 (8) 0.0050 (8) −0.0018 (8)
C1 0.0252 (9) 0.0401 (11) 0.0255 (9) −0.0006 (8) 0.0029 (7) −0.0043 (8)
C2 0.0312 (10) 0.0406 (11) 0.0307 (10) 0.0036 (8) −0.0061 (8) 0.0026 (8)
C9 0.0287 (10) 0.0328 (10) 0.0323 (10) 0.0001 (7) 0.0055 (8) −0.0063 (8)
C4 0.0325 (10) 0.0324 (10) 0.0364 (11) −0.0041 (8) −0.0016 (8) 0.0018 (8)
C3 0.0422 (11) 0.0319 (10) 0.0367 (11) −0.0006 (8) −0.0046 (9) 0.0057 (8)
C10 0.0243 (9) 0.0358 (10) 0.0419 (12) 0.0003 (8) 0.0015 (8) −0.0112 (9)

Geometric parameters (Å, °)

N1—C11 1.332 (2) C12—C8 1.382 (2)
N1—C10 1.335 (2) C12—H12 0.9300
O1—C1 1.3560 (19) C8—C9 1.379 (2)
O1—H1A 0.95 (2) C11—H11 0.9300
O2—C5 1.3756 (17) C1—C2 1.390 (2)
O2—C7 1.4218 (18) C2—C3 1.372 (2)
C7—C8 1.496 (2) C2—H2 0.9300
C7—H7A 0.9700 C9—C10 1.375 (2)
C7—H7B 0.9700 C9—H9 0.9300
C6—C5 1.383 (2) C4—C3 1.392 (2)
C6—C1 1.383 (2) C4—H4 0.9300
C6—H6 0.9300 C3—H3 0.9300
C5—C4 1.381 (2) C10—H10 0.9300
C12—C11 1.381 (2)
C11—N1—C10 116.44 (15) N1—C11—C12 123.70 (17)
C1—O1—H1A 113.5 (12) N1—C11—H11 118.2
C5—O2—C7 117.50 (13) C12—C11—H11 118.2
O2—C7—C8 109.17 (13) O1—C1—C6 117.70 (16)
O2—C7—H7A 109.8 O1—C1—C2 122.82 (15)
C8—C7—H7A 109.8 C6—C1—C2 119.46 (16)
O2—C7—H7B 109.8 C3—C2—C1 119.52 (16)
C8—C7—H7B 109.8 C3—C2—H2 120.2
H7A—C7—H7B 108.3 C1—C2—H2 120.2
C5—C6—C1 120.27 (16) C10—C9—C8 119.27 (16)
C5—C6—H6 119.9 C10—C9—H9 120.4
C1—C6—H6 119.9 C8—C9—H9 120.4
O2—C5—C4 124.39 (15) C5—C4—C3 118.06 (16)
O2—C5—C6 114.70 (15) C5—C4—H4 121.0
C4—C5—C6 120.91 (15) C3—C4—H4 121.0
C11—C12—C8 119.11 (15) C2—C3—C4 121.76 (17)
C11—C12—H12 120.4 C2—C3—H3 119.1
C8—C12—H12 120.4 C4—C3—H3 119.1
C9—C8—C12 117.64 (15) N1—C10—C9 123.82 (16)
C9—C8—C7 119.78 (15) N1—C10—H10 118.1
C12—C8—C7 122.54 (14) C9—C10—H10 118.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1i 0.95 (2) 1.75 (2) 2.6991 (17) 174 (2)

Symmetry codes: (i) x−3/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5062).

References

  1. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS VUniversity of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Yumoto, K., Irie, M. & Matsuda, K. (2008). Org. Lett.10, 2051–2054. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045800/ng5062sup1.cif

e-66-o3147-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045800/ng5062Isup2.hkl

e-66-o3147-Isup2.hkl (95.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES