Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 17;66(Pt 12):o3211. doi: 10.1107/S1600536810046799

(1H-Pyrrol-2-ylmethylidene)(3-{[(1H-pyrrol-2-ylmethylidene)amino]methyl}benzyl)amine

Dong Wan Kim a, Tae Ho Kim a,*, Jineun Kim a, Jae Sang Kim a,*
PMCID: PMC3011650  PMID: 21589504

Abstract

In the title compound, C18H18N4, the dihedral angles between the pyrrole rings and the phenyl ring are 85.07 (8)° and 77.13 (9)°. Inter­molecular N—H⋯N hydrogen bonds contribute to the stabilization of the crystal packing.

Related literature

For the synthesis of the title compound, see: Chakravorty & Holm (1964); Jasat & Dolphin, (1997). For related structures, see: Nativi et al. (2007).graphic file with name e-66-o3211-scheme1.jpg

Experimental

Crystal data

  • C18H18N4

  • M r = 290.36

  • Monoclinic, Inline graphic

  • a = 5.0010 (6) Å

  • b = 17.271 (2) Å

  • c = 17.764 (2) Å

  • β = 96.128 (9)°

  • V = 1525.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.15 × 0.05 × 0.02 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.988, T max = 0.998

  • 12454 measured reflections

  • 2990 independent reflections

  • 1550 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.141

  • S = 0.98

  • 2990 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046799/jh2230sup1.cif

e-66-o3211-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046799/jh2230Isup2.hkl

e-66-o3211-Isup2.hkl (146.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.88 2.17 2.993 (3) 156
N4—H4⋯N2ii 0.88 2.12 2.949 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0016386).

supplementary crystallographic information

Comment

The design and synthesis of supramolcular ligands are based on the ability to organize the binding site and size complementarities in a proper way. Especially, metal ions assisted self-assembly are one of most powerful approaches to supramolecular architectures. For examples, the N4 type of tetradentate ligands, pyrrole-2-yl Schiff base and pyrrole-2-ylmethylene amines have been known for a long time (Chakravorty & Holm, 1964; Jasat & Dolphin, 1997).

In the asymmetric unit (Fig. 1), the dihedral angle between the pyrrole ring plane system and phenyl ring plane are 85.07 (8)° and 77.13 (9)°. All bond lengths and bond angles of pyrrole-2-ylmethylene group are are comparable to those observed in similar structures (Nativi et al., 2007).

In the crystal structure, intermolecular N—H···N hydrogen bonds are observed. These interactinos contribute to stabilization of the packing (Fig. 2).

Experimental

Pyrrole-2-carbaldehyde (1.9 g, 20 mmol) and 1,3-phenylenedimethanamine (1.36 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture strirred for a while, and then a few drops of acetic acid was added. After about 30 min, a light yellow precipitate was observed. After about 20 min, the precipitate obtained from filtration was washed with ethanol, dried in vacuum. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

FT—IR (KBr disk) 3166, 3110, 2830, 1641 cm-1. 1H NMR (300 MHz, DMSO-d6) 4.7 (s, 2H), 6.1 (d, 2H, J=4.2 Hz), 6.5 (t, 2H, J=2.8 Hz), 6.9 (d, 2H, J=4.2 Hz), 7.3 (m, 4H), 8.2 (s, 2H), 11.4 (broad s, 2H). 13C NMR (75 MHz, DMSO-d6) 39.1, 64.3, 109.3, 114.2, 122.6, 126.9, 128.1, 130.4, 140.6, 152.9. EI—MS (m/z): 290 (M+).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso(H) = 1.2Ueq(C) for pyrrole N, d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic C and d(C—H) = 0.99 Å, Uiso(H) = 1.2Ueq(C) for CH2 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with intermolecular N—H···N hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) -x + 1/2, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1/2, -y + 1/2, z + 1/2; (v) x + 1/2, -y - 1.5, z + 1/2.]

Crystal data

C18H18N4 F(000) = 616
Mr = 290.36 Dx = 1.264 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 867 reflections
a = 5.0010 (6) Å θ = 2.3–18.8°
b = 17.271 (2) Å µ = 0.08 mm1
c = 17.764 (2) Å T = 173 K
β = 96.128 (9)° Plate, yellow
V = 1525.5 (3) Å3 0.15 × 0.05 × 0.02 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2990 independent reflections
Radiation source: fine-focus sealed tube 1550 reflections with I > 2σ(I)
graphite Rint = 0.087
φ and ω scans θmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.988, Tmax = 0.998 k = −21→19
12454 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
2990 reflections Δρmax = 0.20 e Å3
200 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0061 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1887 (4) 0.93308 (13) 0.30396 (12) 0.0471 (6)
H1 0.2430 0.9034 0.2683 0.057*
N2 −0.1228 (4) 0.78669 (13) 0.30188 (12) 0.0479 (6)
N3 0.0866 (4) 0.37738 (12) 0.33592 (12) 0.0443 (6)
N4 0.4888 (4) 0.24887 (12) 0.35156 (12) 0.0466 (6)
H4 0.4867 0.2670 0.3052 0.056*
C1 0.2853 (6) 1.00448 (17) 0.32310 (17) 0.0555 (8)
H1A 0.4232 1.0307 0.3004 0.067*
C2 0.1523 (6) 1.03243 (18) 0.38019 (17) 0.0597 (8)
H2 0.1807 1.0812 0.4045 0.072*
C3 −0.0330 (6) 0.97645 (17) 0.39655 (15) 0.0539 (8)
H3 −0.1554 0.9803 0.4338 0.065*
C4 −0.0070 (5) 0.91461 (16) 0.34911 (14) 0.0454 (7)
C5 −0.1556 (6) 0.84397 (16) 0.34583 (15) 0.0488 (7)
H5 −0.2909 0.8389 0.3792 0.059*
C6 −0.2874 (5) 0.71839 (15) 0.31250 (16) 0.0483 (7)
H6A −0.3806 0.7024 0.2630 0.058*
H6B −0.4261 0.7318 0.3461 0.058*
C7 −0.1203 (5) 0.65149 (15) 0.34658 (14) 0.0399 (7)
C8 −0.1874 (5) 0.57583 (16) 0.32711 (14) 0.0436 (7)
H8 −0.3368 0.5664 0.2906 0.052*
C9 −0.0432 (5) 0.51348 (15) 0.35929 (14) 0.0406 (7)
C10 0.1738 (6) 0.52757 (16) 0.41134 (14) 0.0461 (7)
H10 0.2763 0.4856 0.4336 0.055*
C11 0.2443 (5) 0.60305 (16) 0.43154 (14) 0.0476 (7)
H11 0.3950 0.6126 0.4676 0.057*
C12 0.0964 (6) 0.66413 (16) 0.39942 (15) 0.0450 (7)
H12 0.1448 0.7156 0.4140 0.054*
C13 −0.1352 (5) 0.43160 (15) 0.33830 (17) 0.0519 (8)
H13A −0.2540 0.4130 0.3756 0.062*
H13B −0.2420 0.4326 0.2881 0.062*
C14 0.1251 (6) 0.33165 (16) 0.39264 (15) 0.0469 (7)
H14 0.0085 0.3373 0.4311 0.056*
C15 0.3263 (5) 0.27306 (15) 0.40368 (14) 0.0425 (7)
C16 0.3911 (6) 0.23031 (17) 0.46802 (16) 0.0556 (8)
H16 0.3085 0.2341 0.5136 0.067*
C17 0.5993 (6) 0.18029 (17) 0.45480 (17) 0.0592 (8)
H17 0.6864 0.1444 0.4898 0.071*
C18 0.6545 (6) 0.19249 (16) 0.38240 (18) 0.0552 (8)
H18 0.7867 0.1660 0.3576 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0528 (14) 0.0354 (14) 0.0530 (14) 0.0013 (12) 0.0052 (12) −0.0062 (11)
N2 0.0588 (15) 0.0349 (14) 0.0505 (14) −0.0004 (12) 0.0073 (12) 0.0055 (11)
N3 0.0514 (14) 0.0296 (13) 0.0513 (14) −0.0039 (11) 0.0031 (11) −0.0047 (11)
N4 0.0575 (14) 0.0362 (14) 0.0463 (13) −0.0017 (12) 0.0065 (11) 0.0033 (10)
C1 0.0540 (18) 0.0411 (19) 0.070 (2) −0.0056 (15) −0.0008 (16) −0.0095 (15)
C2 0.062 (2) 0.0461 (19) 0.068 (2) 0.0031 (17) −0.0030 (17) −0.0154 (16)
C3 0.0631 (19) 0.054 (2) 0.0443 (17) 0.0067 (17) 0.0046 (14) −0.0067 (14)
C4 0.0553 (18) 0.0410 (18) 0.0398 (15) 0.0019 (15) 0.0043 (14) 0.0011 (12)
C5 0.0599 (19) 0.0463 (19) 0.0410 (16) 0.0061 (15) 0.0088 (14) 0.0070 (13)
C6 0.0526 (17) 0.0369 (17) 0.0555 (18) −0.0025 (14) 0.0066 (14) 0.0048 (13)
C7 0.0473 (17) 0.0364 (17) 0.0369 (15) −0.0013 (13) 0.0083 (14) −0.0002 (12)
C8 0.0428 (16) 0.0437 (19) 0.0439 (16) −0.0025 (14) 0.0022 (13) −0.0035 (13)
C9 0.0437 (16) 0.0348 (17) 0.0429 (15) −0.0033 (14) 0.0031 (14) −0.0037 (12)
C10 0.0557 (18) 0.0346 (17) 0.0477 (17) −0.0007 (14) 0.0042 (15) −0.0008 (12)
C11 0.0494 (17) 0.0438 (19) 0.0482 (17) −0.0049 (15) −0.0012 (14) −0.0069 (13)
C12 0.0542 (19) 0.0311 (17) 0.0510 (17) −0.0025 (14) 0.0125 (15) −0.0026 (13)
C13 0.0505 (17) 0.0362 (18) 0.068 (2) −0.0004 (15) 0.0022 (15) −0.0109 (14)
C14 0.0583 (19) 0.0380 (17) 0.0457 (17) −0.0077 (15) 0.0109 (14) −0.0087 (13)
C15 0.0538 (17) 0.0310 (16) 0.0423 (16) −0.0074 (14) 0.0032 (14) −0.0031 (12)
C16 0.076 (2) 0.0437 (19) 0.0464 (18) −0.0058 (17) 0.0027 (15) −0.0001 (14)
C17 0.074 (2) 0.0400 (19) 0.060 (2) −0.0024 (17) −0.0114 (17) 0.0083 (15)
C18 0.0548 (19) 0.0394 (19) 0.070 (2) 0.0037 (15) 0.0022 (16) 0.0057 (15)

Geometric parameters (Å, °)

N1—C1 1.354 (3) C7—C12 1.373 (4)
N1—C4 1.368 (3) C7—C8 1.384 (3)
N1—H1 0.8800 C8—C9 1.385 (3)
N2—C5 1.282 (3) C8—H8 0.9500
N2—C6 1.462 (3) C9—C10 1.370 (4)
N3—C14 1.279 (3) C9—C13 1.521 (3)
N3—C13 1.456 (3) C10—C11 1.388 (4)
N4—C18 1.356 (3) C10—H10 0.9500
N4—C15 1.361 (3) C11—C12 1.377 (3)
N4—H4 0.8800 C11—H11 0.9500
C1—C2 1.359 (4) C12—H12 0.9500
C1—H1A 0.9500 C13—H13A 0.9900
C2—C3 1.391 (4) C13—H13B 0.9900
C2—H2 0.9500 C14—C15 1.426 (4)
C3—C4 1.375 (4) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.370 (4)
C4—C5 1.426 (4) C16—C17 1.392 (4)
C5—H5 0.9500 C16—H16 0.9500
C6—C7 1.514 (4) C17—C18 1.360 (4)
C6—H6A 0.9900 C17—H17 0.9500
C6—H6B 0.9900 C18—H18 0.9500
C1—N1—C4 108.9 (2) C9—C8—H8 119.0
C1—N1—H1 125.6 C10—C9—C8 118.7 (2)
C4—N1—H1 125.6 C10—C9—C13 121.8 (2)
C5—N2—C6 115.7 (2) C8—C9—C13 119.4 (2)
C14—N3—C13 115.2 (2) C9—C10—C11 120.2 (3)
C18—N4—C15 109.2 (2) C9—C10—H10 119.9
C18—N4—H4 125.4 C11—C10—H10 119.9
C15—N4—H4 125.4 C12—C11—C10 120.1 (3)
N1—C1—C2 108.7 (3) C12—C11—H11 119.9
N1—C1—H1A 125.6 C10—C11—H11 119.9
C2—C1—H1A 125.6 C7—C12—C11 120.8 (3)
C1—C2—C3 107.4 (3) C7—C12—H12 119.6
C1—C2—H2 126.3 C11—C12—H12 119.6
C3—C2—H2 126.3 N3—C13—C9 113.2 (2)
C4—C3—C2 107.6 (3) N3—C13—H13A 108.9
C4—C3—H3 126.2 C9—C13—H13A 108.9
C2—C3—H3 126.2 N3—C13—H13B 108.9
N1—C4—C3 107.4 (2) C9—C13—H13B 108.9
N1—C4—C5 125.3 (2) H13A—C13—H13B 107.8
C3—C4—C5 127.3 (3) N3—C14—C15 126.3 (2)
N2—C5—C4 125.8 (3) N3—C14—H14 116.9
N2—C5—H5 117.1 C15—C14—H14 116.9
C4—C5—H5 117.1 N4—C15—C16 107.3 (3)
N2—C6—C7 111.9 (2) N4—C15—C14 126.0 (2)
N2—C6—H6A 109.2 C16—C15—C14 126.7 (3)
C7—C6—H6A 109.2 C15—C16—C17 107.9 (3)
N2—C6—H6B 109.2 C15—C16—H16 126.0
C7—C6—H6B 109.2 C17—C16—H16 126.0
H6A—C6—H6B 107.9 C18—C17—C16 107.1 (3)
C12—C7—C8 118.3 (2) C18—C17—H17 126.4
C12—C7—C6 120.9 (2) C16—C17—H17 126.4
C8—C7—C6 120.8 (3) N4—C18—C17 108.4 (3)
C7—C8—C9 122.0 (3) N4—C18—H18 125.8
C7—C8—H8 119.0 C17—C18—H18 125.8
C4—N1—C1—C2 −0.2 (3) C13—C9—C10—C11 −177.1 (2)
N1—C1—C2—C3 −0.2 (3) C9—C10—C11—C12 0.0 (4)
C1—C2—C3—C4 0.6 (3) C8—C7—C12—C11 0.6 (3)
C1—N1—C4—C3 0.6 (3) C6—C7—C12—C11 178.6 (2)
C1—N1—C4—C5 −179.9 (3) C10—C11—C12—C7 −0.7 (4)
C2—C3—C4—N1 −0.7 (3) C14—N3—C13—C9 103.7 (3)
C2—C3—C4—C5 179.8 (3) C10—C9—C13—N3 −36.8 (3)
C6—N2—C5—C4 176.1 (3) C8—C9—C13—N3 145.5 (2)
N1—C4—C5—N2 2.1 (4) C13—N3—C14—C15 179.4 (2)
C3—C4—C5—N2 −178.5 (3) C18—N4—C15—C16 −0.5 (3)
C5—N2—C6—C7 −109.9 (3) C18—N4—C15—C14 179.9 (3)
N2—C6—C7—C12 35.8 (3) N3—C14—C15—N4 −9.2 (4)
N2—C6—C7—C8 −146.3 (2) N3—C14—C15—C16 171.3 (3)
C12—C7—C8—C9 0.1 (3) N4—C15—C16—C17 0.9 (3)
C6—C7—C8—C9 −177.9 (2) C14—C15—C16—C17 −179.5 (3)
C7—C8—C9—C10 −0.7 (4) C15—C16—C17—C18 −1.0 (3)
C7—C8—C9—C13 177.1 (2) C15—N4—C18—C17 −0.1 (3)
C8—C9—C10—C11 0.6 (4) C16—C17—C18—N4 0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N3i 0.88 2.17 2.993 (3) 156
N4—H4···N2ii 0.88 2.12 2.949 (3) 158

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2230).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakravorty, A. & Holm, R. H. (1964). Inorg. Chem.3, 1521–1524.
  4. Jasat, A. & Dolphin, D. (1997). Chem. Rev.97, 2267–2340. [DOI] [PubMed]
  5. Nativi, C., Cacciarini, M., Francesconi, O., Vacca, A., Moneti, G., Ienco, A. & Roelens, S. (2007). J. Am. Chem. Soc.129, 4377–4385. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046799/jh2230sup1.cif

e-66-o3211-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046799/jh2230Isup2.hkl

e-66-o3211-Isup2.hkl (146.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES