Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 27;66(Pt 12):m1687. doi: 10.1107/S1600536810049081

Tetra­kis[1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one-κN 4]bis­(thio­cyanato-κN)nickel(II)

Jian-Hua Guo a,*
PMCID: PMC3011655  PMID: 21589343

Abstract

In the centrosymmetric mononuclear title complex, [Ni(NCS)2(C11H11N3O)4], the NiII atom, located on an inversion centre, is hexa­coordinated in a distorted octa­hedral geometry comprising four N atoms of four monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands and two N atoms from thio­cyanate anions.

Related literature

Pseudohalide anions N3 , NCS and NCO are versatile ligands in coordination chemistry because of their multiple bridging modes, see: Yue et al. (2008). For a related structure, see: Guo & Cai (2007).graphic file with name e-66-m1687-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C11H11N3O)4]

  • M r = 979.78

  • Triclinic, Inline graphic

  • a = 7.8067 (10) Å

  • b = 11.8539 (15) Å

  • c = 13.8179 (17) Å

  • α = 68.907 (2)°

  • β = 74.765 (2)°

  • γ = 81.687 (2)°

  • V = 1149.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.838, T max = 0.884

  • 6289 measured reflections

  • 4016 independent reflections

  • 3540 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.080

  • S = 1.06

  • 4016 reflections

  • 304 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049081/pk2286sup1.cif

e-66-m1687-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049081/pk2286Isup2.hkl

e-66-m1687-Isup2.hkl (196.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author gratefully acknowledges financial support from the Youthful Foundation of Tianjin Normal University (Natural Science, grant No. 52 L J44)

supplementary crystallographic information

Comment

Pseudohalide anions N3-, NCS- and NCO- are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue et al., 2008). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo et al., 2007). To further explore this series, we synthesized the title compound, a new NiII complex based on the mixed ligands thiocyanato and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L), which consists of a propanone unit substituted with an triazole and a phenyl group. The crystal structure of the compound consists of a neutral mononuclear [Ni(L)4(SCN)2] molecule. As shown in Fig. 1, the NiII centre is coordinated by four N atoms from four L ligands, with Ni—N bond lengths in the range 2.103 (1)–2.135 (1) Å, two additional N donor from SCN anion, with a Ni—N bond distance of 2.078 (2) Å. Thus, the coordination polyhedron around the NiII cation could be best described as a distorted octahedral geometry. Analysis of the crystal packing indicates that there were no hydrogen bond or πi-πi stacking interactions in the crystal structure. (see Fig. 2).

Experimental

Ni(NO3)2.6H2O (29.1 mg, 0.1 mmol), 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (22.3 mg, 0.1 mmol) and NH4SCN (7.6 mg, 0.1 mmol) were mixed in a CH3CN—H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Green block crystals suitable for X-ray analysis were obtained in 60% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for NiC46H44N14O4S2: C 56.39, H 4.53, N 20.01; found: C 56.44, H 4.64, N 20.05.

Refinement

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms.

Figures

Fig. 1.

Fig. 1.

The title complex with atom labeling, shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing view of compound.

Crystal data

[Ni(NCS)2(C11H11N3O)4] Z = 1
Mr = 979.78 F(000) = 510
Triclinic, P1 Dx = 1.416 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8067 (10) Å Cell parameters from 3376 reflections
b = 11.8539 (15) Å θ = 2.7–27.7°
c = 13.8179 (17) Å µ = 0.57 mm1
α = 68.907 (2)° T = 293 K
β = 74.765 (2)° Block, green
γ = 81.687 (2)° 0.32 × 0.28 × 0.22 mm
V = 1149.3 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 4016 independent reflections
Radiation source: fine-focus sealed tube 3540 reflections with I > 2σ(I)
graphite Rint = 0.015
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.838, Tmax = 0.884 k = −14→12
6289 measured reflections l = −16→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.040P)2 + 0.2997P] where P = (Fo2 + 2Fc2)/3
4016 reflections (Δ/σ)max = 0.001
304 parameters Δρmax = 0.38 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.0000 0.0000 1.0000 0.03496 (10)
S1 0.33805 (8) 0.17536 (5) 1.13687 (5) 0.06495 (17)
O1 −0.2740 (2) 0.43272 (14) 0.66743 (14) 0.0764 (5)
O2 0.7081 (2) 0.11988 (13) 0.41955 (11) 0.0655 (4)
N1 −0.13110 (18) 0.17612 (12) 0.96907 (11) 0.0392 (3)
N2 −0.3141 (2) 0.33084 (13) 0.91887 (12) 0.0452 (4)
N3 −0.2531 (2) 0.35006 (14) 0.99458 (13) 0.0532 (4)
N4 0.22222 (18) 0.06368 (13) 0.87523 (10) 0.0396 (3)
N5 0.42461 (19) 0.09149 (13) 0.72860 (11) 0.0413 (3)
N6 0.4816 (2) 0.14708 (15) 0.78321 (12) 0.0524 (4)
N7 0.1164 (2) 0.03338 (14) 1.10545 (12) 0.0463 (4)
C1 −0.1443 (3) 0.25495 (17) 1.02134 (14) 0.0482 (4)
H1 −0.0805 0.2426 1.0728 0.058*
C2 −0.2417 (2) 0.22777 (16) 0.90504 (14) 0.0433 (4)
H2 −0.2650 0.1963 0.8574 0.052*
C3 −0.4513 (3) 0.41348 (18) 0.87177 (18) 0.0575 (5)
H3A −0.5452 0.4287 0.9282 0.069*
H3B −0.5027 0.3749 0.8357 0.069*
C4 −0.3814 (3) 0.53338 (17) 0.79313 (15) 0.0517 (5)
H4A −0.4803 0.5932 0.7850 0.062*
H4B −0.3006 0.5603 0.8219 0.062*
C5 −0.2859 (3) 0.52697 (17) 0.68498 (17) 0.0512 (5)
C6 −0.2094 (3) 0.63838 (17) 0.59972 (15) 0.0478 (4)
C7 −0.2128 (3) 0.74666 (18) 0.61733 (17) 0.0589 (5)
H7 −0.2664 0.7521 0.6842 0.071*
C8 −0.1372 (3) 0.8465 (2) 0.53641 (19) 0.0696 (6)
H8 −0.1401 0.9186 0.5493 0.084*
C9 −0.0584 (3) 0.8405 (2) 0.43801 (19) 0.0694 (6)
H9 −0.0070 0.9081 0.3840 0.083*
C10 −0.0551 (3) 0.7347 (2) 0.41887 (19) 0.0725 (7)
H10 −0.0023 0.7306 0.3514 0.087*
C11 −0.1297 (3) 0.6340 (2) 0.49890 (17) 0.0618 (6)
H11 −0.1263 0.5624 0.4851 0.074*
C12 0.3558 (3) 0.12746 (18) 0.87042 (14) 0.0501 (5)
H12 0.3584 0.1553 0.9249 0.060*
C13 0.2719 (2) 0.04232 (16) 0.78431 (13) 0.0430 (4)
H13 0.2086 −0.0012 0.7625 0.052*
C14 0.5325 (3) 0.08618 (17) 0.62641 (14) 0.0493 (5)
H14A 0.4685 0.0474 0.5967 0.059*
H14B 0.6421 0.0382 0.6369 0.059*
C15 0.5753 (2) 0.21197 (16) 0.54981 (13) 0.0448 (4)
H15A 0.4652 0.2606 0.5427 0.054*
H15B 0.6432 0.2490 0.5789 0.054*
C16 0.6796 (2) 0.21220 (17) 0.44120 (14) 0.0433 (4)
C17 0.7446 (2) 0.32998 (16) 0.36077 (13) 0.0409 (4)
C18 0.6985 (3) 0.43852 (18) 0.37917 (15) 0.0540 (5)
H18 0.6274 0.4396 0.4445 0.065*
C19 0.7573 (3) 0.54573 (19) 0.30103 (17) 0.0640 (6)
H19 0.7237 0.6188 0.3134 0.077*
C20 0.8645 (3) 0.5447 (2) 0.20578 (16) 0.0605 (6)
H20 0.9041 0.6170 0.1535 0.073*
C21 0.9141 (3) 0.4374 (2) 0.18690 (16) 0.0633 (6)
H21 0.9881 0.4368 0.1222 0.076*
C22 0.8541 (3) 0.33028 (19) 0.26387 (15) 0.0549 (5)
H22 0.8873 0.2577 0.2506 0.066*
C23 0.2074 (2) 0.09092 (16) 1.12141 (13) 0.0401 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.03343 (17) 0.03979 (18) 0.02712 (16) −0.01089 (12) −0.00462 (12) −0.00422 (12)
S1 0.0753 (4) 0.0712 (4) 0.0618 (3) −0.0221 (3) −0.0177 (3) −0.0299 (3)
O1 0.0911 (12) 0.0527 (9) 0.0871 (11) −0.0029 (8) −0.0070 (9) −0.0353 (8)
O2 0.0860 (11) 0.0510 (8) 0.0485 (8) −0.0119 (7) 0.0079 (7) −0.0171 (7)
N1 0.0398 (8) 0.0403 (8) 0.0326 (7) −0.0093 (6) −0.0067 (6) −0.0048 (6)
N2 0.0433 (8) 0.0441 (8) 0.0441 (8) −0.0059 (7) −0.0123 (7) −0.0070 (7)
N3 0.0634 (10) 0.0478 (9) 0.0490 (9) −0.0007 (8) −0.0173 (8) −0.0148 (7)
N4 0.0383 (8) 0.0434 (8) 0.0313 (7) −0.0106 (6) −0.0035 (6) −0.0059 (6)
N5 0.0421 (8) 0.0440 (8) 0.0316 (7) −0.0120 (6) −0.0004 (6) −0.0074 (6)
N6 0.0522 (9) 0.0625 (10) 0.0407 (8) −0.0271 (8) 0.0016 (7) −0.0149 (7)
N7 0.0434 (8) 0.0555 (9) 0.0386 (8) −0.0095 (7) −0.0108 (7) −0.0106 (7)
C1 0.0595 (12) 0.0468 (10) 0.0389 (10) −0.0058 (9) −0.0163 (9) −0.0103 (8)
C2 0.0427 (10) 0.0456 (10) 0.0390 (9) −0.0107 (8) −0.0085 (8) −0.0089 (8)
C3 0.0442 (11) 0.0561 (12) 0.0645 (13) 0.0005 (9) −0.0162 (10) −0.0099 (10)
C4 0.0539 (11) 0.0465 (10) 0.0526 (11) 0.0065 (9) −0.0187 (9) −0.0131 (9)
C5 0.0485 (11) 0.0462 (11) 0.0617 (12) 0.0077 (8) −0.0199 (9) −0.0204 (9)
C6 0.0481 (11) 0.0468 (10) 0.0494 (11) 0.0110 (8) −0.0187 (9) −0.0169 (8)
C7 0.0749 (14) 0.0495 (11) 0.0498 (11) 0.0059 (10) −0.0145 (10) −0.0172 (9)
C8 0.0873 (17) 0.0482 (12) 0.0687 (15) 0.0031 (11) −0.0207 (13) −0.0149 (11)
C9 0.0619 (14) 0.0622 (14) 0.0656 (15) 0.0035 (11) −0.0142 (11) −0.0027 (11)
C10 0.0664 (15) 0.0860 (18) 0.0514 (13) 0.0121 (13) −0.0045 (11) −0.0196 (12)
C11 0.0651 (13) 0.0624 (13) 0.0596 (13) 0.0122 (11) −0.0150 (11) −0.0282 (11)
C12 0.0558 (11) 0.0570 (11) 0.0366 (9) −0.0258 (9) 0.0021 (8) −0.0152 (8)
C13 0.0409 (10) 0.0501 (10) 0.0346 (9) −0.0159 (8) −0.0054 (7) −0.0075 (8)
C14 0.0524 (11) 0.0510 (11) 0.0353 (9) −0.0089 (9) 0.0050 (8) −0.0120 (8)
C15 0.0436 (10) 0.0480 (10) 0.0337 (9) −0.0043 (8) −0.0008 (7) −0.0080 (8)
C16 0.0409 (10) 0.0480 (10) 0.0361 (9) −0.0038 (8) −0.0054 (7) −0.0106 (8)
C17 0.0383 (9) 0.0477 (10) 0.0323 (9) −0.0046 (8) −0.0070 (7) −0.0082 (7)
C18 0.0627 (12) 0.0512 (11) 0.0382 (10) −0.0030 (9) −0.0022 (9) −0.0098 (8)
C19 0.0799 (16) 0.0478 (11) 0.0563 (13) −0.0061 (11) −0.0133 (11) −0.0088 (10)
C20 0.0604 (13) 0.0596 (13) 0.0482 (12) −0.0217 (10) −0.0102 (10) 0.0027 (10)
C21 0.0624 (13) 0.0771 (15) 0.0361 (10) −0.0192 (11) 0.0063 (9) −0.0088 (10)
C22 0.0611 (12) 0.0584 (12) 0.0385 (10) −0.0109 (10) 0.0022 (9) −0.0152 (9)
C23 0.0417 (9) 0.0467 (10) 0.0299 (8) −0.0030 (7) −0.0084 (7) −0.0101 (7)

Geometric parameters (Å, °)

Ni1—N7i 2.0783 (15) C6—C7 1.385 (3)
Ni1—N7 2.0783 (15) C6—C11 1.385 (3)
Ni1—N4 2.1028 (13) C7—C8 1.379 (3)
Ni1—N4i 2.1028 (13) C7—H7 0.9300
Ni1—N1 2.1351 (14) C8—C9 1.360 (3)
Ni1—N1i 2.1351 (14) C8—H8 0.9300
S1—C23 1.6282 (19) C9—C10 1.368 (4)
O1—C5 1.212 (2) C9—H9 0.9300
O2—C16 1.211 (2) C10—C11 1.378 (3)
N1—C2 1.327 (2) C10—H10 0.9300
N1—C1 1.351 (2) C11—H11 0.9300
N2—C2 1.327 (2) C12—H12 0.9300
N2—N3 1.355 (2) C13—H13 0.9300
N2—C3 1.461 (2) C14—C15 1.509 (2)
N3—C1 1.311 (2) C14—H14A 0.9700
N4—C13 1.318 (2) C14—H14B 0.9700
N4—C12 1.349 (2) C15—C16 1.507 (2)
N5—C13 1.322 (2) C15—H15A 0.9700
N5—N6 1.349 (2) C15—H15B 0.9700
N5—C14 1.460 (2) C16—C17 1.495 (2)
N6—C12 1.309 (2) C17—C18 1.379 (3)
N7—C23 1.162 (2) C17—C22 1.385 (2)
C1—H1 0.9300 C18—C19 1.383 (3)
C2—H2 0.9300 C18—H18 0.9300
C3—C4 1.516 (3) C19—C20 1.365 (3)
C3—H3A 0.9700 C19—H19 0.9300
C3—H3B 0.9700 C20—C21 1.371 (3)
C4—C5 1.508 (3) C20—H20 0.9300
C4—H4A 0.9700 C21—C22 1.379 (3)
C4—H4B 0.9700 C21—H21 0.9300
C5—C6 1.492 (3) C22—H22 0.9300
N7i—Ni1—N7 180.0 C8—C7—H7 119.8
N7i—Ni1—N4 89.53 (6) C6—C7—H7 119.8
N7—Ni1—N4 90.47 (6) C9—C8—C7 120.7 (2)
N7i—Ni1—N4i 90.47 (6) C9—C8—H8 119.7
N7—Ni1—N4i 89.53 (6) C7—C8—H8 119.7
N4—Ni1—N4i 180.0 C8—C9—C10 119.7 (2)
N7i—Ni1—N1 90.38 (6) C8—C9—H9 120.2
N7—Ni1—N1 89.62 (6) C10—C9—H9 120.2
N4—Ni1—N1 92.47 (5) C9—C10—C11 120.4 (2)
N4i—Ni1—N1 87.53 (5) C9—C10—H10 119.8
N7i—Ni1—N1i 89.62 (6) C11—C10—H10 119.8
N7—Ni1—N1i 90.38 (6) C10—C11—C6 120.6 (2)
N4—Ni1—N1i 87.53 (5) C10—C11—H11 119.7
N4i—Ni1—N1i 92.47 (5) C6—C11—H11 119.7
N1—Ni1—N1i 180.0 N6—C12—N4 114.85 (17)
C2—N1—C1 102.31 (15) N6—C12—H12 122.6
C2—N1—Ni1 128.52 (13) N4—C12—H12 122.6
C1—N1—Ni1 128.48 (12) N4—C13—N5 110.34 (16)
C2—N2—N3 110.13 (15) N4—C13—H13 124.8
C2—N2—C3 129.49 (17) N5—C13—H13 124.8
N3—N2—C3 120.18 (16) N5—C14—C15 110.42 (15)
C1—N3—N2 102.04 (15) N5—C14—H14A 109.6
C13—N4—C12 102.53 (14) C15—C14—H14A 109.6
C13—N4—Ni1 127.68 (12) N5—C14—H14B 109.6
C12—N4—Ni1 129.61 (12) C15—C14—H14B 109.6
C13—N5—N6 109.87 (14) H14A—C14—H14B 108.1
C13—N5—C14 129.32 (16) C16—C15—C14 112.64 (15)
N6—N5—C14 120.71 (14) C16—C15—H15A 109.1
C12—N6—N5 102.40 (14) C14—C15—H15A 109.1
C23—N7—Ni1 149.53 (14) C16—C15—H15B 109.1
N3—C1—N1 115.41 (17) C14—C15—H15B 109.1
N3—C1—H1 122.3 H15A—C15—H15B 107.8
N1—C1—H1 122.3 O2—C16—C17 121.11 (16)
N2—C2—N1 110.11 (17) O2—C16—C15 120.90 (16)
N2—C2—H2 124.9 C17—C16—C15 117.98 (16)
N1—C2—H2 124.9 C18—C17—C22 118.80 (17)
N2—C3—C4 113.09 (16) C18—C17—C16 122.40 (16)
N2—C3—H3A 109.0 C22—C17—C16 118.79 (17)
C4—C3—H3A 109.0 C17—C18—C19 120.34 (19)
N2—C3—H3B 109.0 C17—C18—H18 119.8
C4—C3—H3B 109.0 C19—C18—H18 119.8
H3A—C3—H3B 107.8 C20—C19—C18 120.2 (2)
C5—C4—C3 113.39 (17) C20—C19—H19 119.9
C5—C4—H4A 108.9 C18—C19—H19 119.9
C3—C4—H4A 108.9 C19—C20—C21 120.16 (19)
C5—C4—H4B 108.9 C19—C20—H20 119.9
C3—C4—H4B 108.9 C21—C20—H20 119.9
H4A—C4—H4B 107.7 C20—C21—C22 119.97 (19)
O1—C5—C6 120.63 (19) C20—C21—H21 120.0
O1—C5—C4 120.17 (19) C22—C21—H21 120.0
C6—C5—C4 119.19 (17) C21—C22—C17 120.5 (2)
C7—C6—C11 118.2 (2) C21—C22—H22 119.8
C7—C6—C5 122.69 (18) C17—C22—H22 119.8
C11—C6—C5 119.16 (18) N7—C23—S1 176.90 (16)
C8—C7—C6 120.5 (2)
N7i—Ni1—N1—C2 0.68 (14) O1—C5—C6—C7 −177.0 (2)
N7—Ni1—N1—C2 −179.32 (14) C4—C5—C6—C7 4.0 (3)
N4—Ni1—N1—C2 90.22 (14) O1—C5—C6—C11 2.2 (3)
N4i—Ni1—N1—C2 −89.78 (14) C4—C5—C6—C11 −176.77 (18)
N7i—Ni1—N1—C1 169.37 (15) C11—C6—C7—C8 −0.5 (3)
N7—Ni1—N1—C1 −10.63 (15) C5—C6—C7—C8 178.7 (2)
N4—Ni1—N1—C1 −101.08 (15) C6—C7—C8—C9 0.1 (4)
N4i—Ni1—N1—C1 78.92 (15) C7—C8—C9—C10 0.4 (4)
C2—N2—N3—C1 0.4 (2) C8—C9—C10—C11 −0.6 (4)
C3—N2—N3—C1 175.77 (16) C9—C10—C11—C6 0.2 (4)
N7i—Ni1—N4—C13 −19.91 (15) C7—C6—C11—C10 0.3 (3)
N7—Ni1—N4—C13 160.09 (15) C5—C6—C11—C10 −178.9 (2)
N1—Ni1—N4—C13 −110.27 (15) N5—N6—C12—N4 −0.2 (2)
N1i—Ni1—N4—C13 69.73 (15) C13—N4—C12—N6 0.5 (2)
N7i—Ni1—N4—C12 165.83 (16) Ni1—N4—C12—N6 175.88 (13)
N7—Ni1—N4—C12 −14.17 (16) C12—N4—C13—N5 −0.6 (2)
N1—Ni1—N4—C12 75.48 (16) Ni1—N4—C13—N5 −176.09 (11)
N1i—Ni1—N4—C12 −104.52 (16) N6—N5—C13—N4 0.5 (2)
C13—N5—N6—C12 −0.2 (2) C14—N5—C13—N4 176.90 (16)
C14—N5—N6—C12 −176.91 (17) C13—N5—C14—C15 128.03 (19)
N4—Ni1—N7—C23 32.2 (3) N6—N5—C14—C15 −55.9 (2)
N4i—Ni1—N7—C23 −147.8 (3) N5—C14—C15—C16 −177.37 (15)
N1—Ni1—N7—C23 −60.3 (3) C14—C15—C16—O2 6.2 (3)
N1i—Ni1—N7—C23 119.7 (3) C14—C15—C16—C17 −174.59 (16)
N2—N3—C1—N1 −0.2 (2) O2—C16—C17—C18 173.0 (2)
C2—N1—C1—N3 −0.1 (2) C15—C16—C17—C18 −6.3 (3)
Ni1—N1—C1—N3 −171.03 (12) O2—C16—C17—C22 −6.5 (3)
N3—N2—C2—N1 −0.5 (2) C15—C16—C17—C22 174.30 (17)
C3—N2—C2—N1 −175.28 (16) C22—C17—C18—C19 1.5 (3)
C1—N1—C2—N2 0.33 (19) C16—C17—C18—C19 −177.93 (19)
Ni1—N1—C2—N2 171.29 (11) C17—C18—C19—C20 −1.3 (3)
C2—N2—C3—C4 −110.8 (2) C18—C19—C20—C21 0.2 (4)
N3—N2—C3—C4 74.8 (2) C19—C20—C21—C22 0.6 (4)
N2—C3—C4—C5 79.4 (2) C20—C21—C22—C17 −0.4 (3)
C3—C4—C5—O1 1.3 (3) C18—C17—C22—C21 −0.7 (3)
C3—C4—C5—C6 −179.74 (16) C16—C17—C22—C21 178.80 (19)

Symmetry codes: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2286).

References

  1. Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Guo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322–m1324.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Yue, Y. F., Gao, E. Q., Fang, C. J., Zheng, T., Liang, J. & Yan, C. H. (2008). Cryst. Growth Des.9, 3295–3301.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049081/pk2286sup1.cif

e-66-m1687-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049081/pk2286Isup2.hkl

e-66-m1687-Isup2.hkl (196.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES