Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 30;66(Pt 12):m1693. doi: 10.1107/S1600536810049305

Metal–nucleobase inter­action: bis[4-amino­pyrimidin-2(1H)-one-κN 3]dibromidozinc(II)

Ammasai Karthikeyan a, Samuel Ebenezer a, Packianathan Thomas Muthiah a,*
PMCID: PMC3011690  PMID: 21589348

Abstract

In the title complex, [ZnBr2(C4H5N3O)2], the central metal ion is coordinated to two bromide ions and endocyclic N atoms of the two cytosine mol­ecules leading to a distorted tetra­hedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Muthiah et al. (2001). Acta Cryst. E57, m558–m560]. There are two inter­ligand N—H⋯Br hydrogen bonds, generating two hydrogen-bonded rings stabilizing the coordination sphere. The complex aggregates, forming supra­molecular chains, sheets and staircases through N—H⋯O and N—H⋯Br hydrogen bonding and π–π stacking inter­actions [centroid–centroid distance = 3.616 (2) Å].

Related literature

For metal ion–nucleic acid inter­actions, see: Muller (2010). For different modes of binding between metal ions and cytosine, see: Lippert (2000). For an isotypic complex, see: Muthiah et al. (2001).graphic file with name e-66-m1693-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C4H5N3O)2]

  • M r = 447.41

  • Triclinic, Inline graphic

  • a = 7.1337 (2) Å

  • b = 7.8375 (2) Å

  • c = 12.4275 (3) Å

  • α = 86.746 (2)°

  • β = 75.199 (2)°

  • γ = 87.448 (2)°

  • V = 670.36 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.80 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.203, T max = 0.305

  • 13254 measured reflections

  • 2973 independent reflections

  • 2204 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.083

  • S = 1.02

  • 2973 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049305/hg2756sup1.cif

e-66-m1693-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049305/hg2756Isup2.hkl

e-66-m1693-Isup2.hkl (142.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2Ai 0.86 1.94 2.766 (5) 161
N1B—H1B⋯Br1ii 0.86 2.70 3.483 (3) 151
N4A—H2A⋯Br1 0.86 2.74 3.577 (4) 165
N4B—H2B⋯Br2 0.86 2.65 3.454 (3) 155
N4A—H3A⋯Br2iii 0.86 2.91 3.339 (4) 112
N4B—H3B⋯O2Biv 0.86 2.19 3.003 (5) 157
C5A—H5A⋯Br2v 0.93 2.87 3.726 (4) 153
C6A—H6A⋯O2Bvi 0.93 2.42 3.292 (6) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank the DST–India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University.

supplementary crystallographic information

Comment

The studies of metal ion–nucleic acid interactions are of continued interest in bioinorganic chemistry (Muller, 2010). There are several modes of binding between a cytosine and metal ion. The cytosine coordinates in a monodentate fashion either through N3, N4, O2 or C5 sites. Similarly it acts as a bidentate ligand by chelating, semi-chelating or bridging via N3, O2 and N3, N4 sites (Lippert, 2000). However the most preferable mode of binding is via N3 as observed in majority of the cases. In the present study we have prepared a metal complex of zinc-cytosine as a model for Zn (II) ion interactions with guanine-cytosine rich regions of nucleic acids (DNA and RNA). The crystal structure is found to be isomorphous with the earlier reported structure of dibromobis(cytosine)cadmium(II) (Muthiah et al., 2001).

The title complex is coordinated by two bromide ions in addition to two cytosine molecules. The ORTEP view is shown in Figure 1. The two crystallographically independent cytosine molecules coordinate through N3 position forming a tetrahedral geometry around the central Zn (II) ion with slight distortion. This distortion is not only because of the dissimilar ligands coordinated to the central metal ion but is due to the additional attraction between the zinc ion and the oxygen of the cytosine molecule. This can be confirmed by looking into the contact distances between Zn···O in both the molecules (A and B) which are 2.804 (3) Å and 2.858 (3) Å respectively. It is further substantiated by the exocyclic bond angles at N3 (Zn—N3—C4 and Zn—N3—C2) of cytosine which is 132.0 (3)° and 109.0 (3)° for molecule A and 128.1 (3)° and 109.3 (2)° for molecule B. The stability of the coordinated metal complex is also enhanced by the two inter-ligand hydrogen bonds (N—H···Br hydrogen bond). These are formed between the amino group of the coordinated cytosine and the coordinated bromide ion which are lying in proximity. The interligand hydrogen bonds generate two hydrogen-bonded rings (Figure 1). These are very characteristic of metal-nucleobase interactions (Lippert, 2000).

The hydrogen bonding geometries of the title complex are given in Table 1. The two cytosines that have coordinated to the metal ion, although look similar, form different inter-molecular hydrogen bonds. The amino nitrogen of molecule B connects with the oxygen of the neighboring molecule via N4B—H4B···O2B extending into an infinite chain. This chain is supported by an additional weak hydrogen bond (N4A-H4A2···Br2) between the A molecules of neighboring cytosine (Figure 2). The infinite chain can further aggregate itself in two different ways. A supramolecular sheet is formed when the adjacent chains are linked by molecule B via N1B—H1B···Br1 hydrogen bonds (Figure 3). Similarly a staircase is formed when the inversely related chains pair up via N1A—H1A···O2A hydrogen bonds involving molecule A (Figure 4). These molecules form the steps of the staircase and stack one over the other through π-π stacking with a cg-cg distance of 3.616 (2) and a slip angle of 24.32°. Besides this, weak C—H···O and C—H···Br interactions are additionally present which stabilize the entire crystal structure.

Experimental

Solution of zinc bromide anhydrous (0.056 g, 0.25 mmol) in 10 ml of hot propanol and cytosine (0.055 g, 0.50 mmol) in 10 ml of hot water were mixed mixed and dissolved in an 1:2 molar ratio. The resultant solution was heated over a water bath for an hour and on slow cooling the solution gave transparent colourless prismatic crystals.

Refinement

All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H and C—H bond lengths are 0.86 and 0.93 Å respectively [Uiso(H)=1.2 Ueq (parent atom)].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

View of an infinite chain linked by N4B—H4B···O2B and N4A-H4A2···Br2 hydrogen bonds.

Fig. 3.

Fig. 3.

View of a supramolecular sheet along the (001) plane.

Fig. 4.

Fig. 4.

Molecular staircase formed by pairing of two infinite chains through hydrogen bonding and stacking interactions.

Crystal data

[ZnBr2(C4H5N3O)2] Z = 2
Mr = 447.41 F(000) = 432
Triclinic, P1 Dx = 2.217 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1337 (2) Å Cell parameters from 2973 reflections
b = 7.8375 (2) Å θ = 1.7–27.2°
c = 12.4275 (3) Å µ = 7.80 mm1
α = 86.746 (2)° T = 293 K
β = 75.199 (2)° Prism, colourless
γ = 87.448 (2)° 0.3 × 0.2 × 0.2 mm
V = 670.36 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2973 independent reflections
Radiation source: fine-focus sealed tube 2204 reflections with I > 2σ(I)
graphite Rint = 0.043
φ and ω scans θmax = 27.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.203, Tmax = 0.305 k = −10→10
13254 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0441P)2] where P = (Fo2 + 2Fc2)/3
2973 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.34971 (6) 1.00965 (5) 0.84763 (4) 0.0378 (1)
Br2 0.88031 (6) 1.05932 (5) 0.68592 (4) 0.0374 (1)
Zn 0.63076 (7) 0.84924 (6) 0.74430 (4) 0.0303 (2)
O2A 0.9020 (4) 0.6403 (4) 0.6017 (3) 0.0454 (11)
O2B 0.4019 (4) 0.5579 (3) 0.8291 (3) 0.0372 (10)
N1A 0.7973 (5) 0.6009 (4) 0.4478 (3) 0.0326 (11)
N1B 0.5996 (5) 0.3618 (4) 0.8891 (3) 0.0364 (11)
N3A 0.6105 (4) 0.7588 (4) 0.5954 (3) 0.0275 (10)
N3B 0.6990 (4) 0.6425 (4) 0.8371 (3) 0.0264 (10)
N4A 0.3118 (5) 0.8664 (4) 0.5860 (3) 0.0426 (12)
N4B 1.0054 (5) 0.7147 (4) 0.8420 (3) 0.0439 (14)
C2A 0.7755 (6) 0.6643 (5) 0.5505 (4) 0.0304 (12)
C2B 0.5592 (6) 0.5230 (5) 0.8506 (3) 0.0296 (12)
C4A 0.4734 (6) 0.7811 (5) 0.5385 (4) 0.0307 (14)
C4B 0.8725 (6) 0.5973 (5) 0.8562 (3) 0.0283 (12)
C5A 0.4985 (6) 0.7156 (5) 0.4323 (4) 0.0367 (16)
C5B 0.9146 (6) 0.4288 (5) 0.8921 (4) 0.0352 (12)
C6A 0.6632 (6) 0.6267 (5) 0.3895 (4) 0.0371 (16)
C6B 0.7763 (7) 0.3150 (5) 0.9073 (4) 0.0396 (16)
H1A 0.90110 0.54210 0.41930 0.0390*
H1B 0.51060 0.28730 0.90240 0.0430*
H2A 0.29720 0.90540 0.65110 0.0510*
H2B 0.98030 0.81770 0.82100 0.0530*
H3A 0.22130 0.88290 0.55190 0.0510*
H3B 1.11690 0.68790 0.85380 0.0530*
H5A 0.40390 0.73350 0.39310 0.0440*
H5B 1.03500 0.39860 0.90470 0.0420*
H6A 0.68450 0.58280 0.31920 0.0450*
H6B 0.79990 0.20290 0.93040 0.0480*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0296 (2) 0.0316 (2) 0.0490 (3) −0.0027 (2) −0.0031 (2) −0.0055 (2)
Br2 0.0269 (2) 0.0323 (2) 0.0511 (3) −0.0019 (2) −0.0075 (2) 0.0042 (2)
Zn 0.0284 (3) 0.0287 (2) 0.0348 (3) 0.0000 (2) −0.0101 (2) −0.0002 (2)
O2A 0.0353 (18) 0.060 (2) 0.047 (2) 0.0205 (15) −0.0223 (16) −0.0176 (16)
O2B 0.0288 (17) 0.0358 (16) 0.0495 (19) −0.0045 (13) −0.0135 (14) −0.0045 (14)
N1A 0.0248 (19) 0.0391 (19) 0.035 (2) 0.0063 (15) −0.0093 (16) −0.0096 (16)
N1B 0.039 (2) 0.0251 (17) 0.045 (2) −0.0093 (16) −0.0100 (18) 0.0027 (16)
N3A 0.0233 (18) 0.0268 (16) 0.0331 (19) 0.0014 (14) −0.0089 (15) −0.0022 (15)
N3B 0.0229 (18) 0.0254 (16) 0.0319 (19) −0.0029 (14) −0.0092 (15) 0.0026 (14)
N4A 0.032 (2) 0.050 (2) 0.050 (2) 0.0118 (18) −0.0187 (19) −0.0110 (19)
N4B 0.033 (2) 0.044 (2) 0.061 (3) −0.0100 (17) −0.0259 (19) 0.0166 (19)
C2A 0.028 (2) 0.030 (2) 0.034 (2) 0.0022 (18) −0.0098 (19) −0.0019 (18)
C2B 0.028 (2) 0.030 (2) 0.029 (2) −0.0046 (18) −0.0031 (18) −0.0025 (18)
C4A 0.029 (2) 0.0242 (19) 0.039 (3) −0.0022 (17) −0.0098 (19) 0.0035 (18)
C4B 0.030 (2) 0.032 (2) 0.023 (2) −0.0017 (18) −0.0074 (17) 0.0017 (17)
C5A 0.038 (3) 0.037 (2) 0.041 (3) 0.002 (2) −0.022 (2) 0.001 (2)
C5B 0.035 (2) 0.039 (2) 0.035 (2) 0.002 (2) −0.016 (2) −0.001 (2)
C6A 0.039 (3) 0.039 (2) 0.035 (3) 0.000 (2) −0.012 (2) −0.005 (2)
C6B 0.051 (3) 0.031 (2) 0.038 (3) 0.003 (2) −0.015 (2) 0.002 (2)

Geometric parameters (Å, °)

Br1—Zn 2.4275 (7) N4B—C4B 1.323 (5)
Br2—Zn 2.4232 (7) N1A—H1A 0.8600
Zn—N3A 2.060 (4) N1B—H1B 0.8600
Zn—N3B 2.049 (3) N4A—H3A 0.8600
O2A—C2A 1.233 (6) N4A—H2A 0.8600
O2B—C2B 1.234 (5) N4B—H2B 0.8600
N1A—C2A 1.365 (6) N4B—H3B 0.8600
N1A—C6A 1.342 (6) C4A—C5A 1.409 (7)
N1B—C2B 1.370 (5) C4B—C5B 1.414 (6)
N1B—C6B 1.367 (6) C5A—C6A 1.341 (6)
N3A—C2A 1.371 (5) C5B—C6B 1.330 (6)
N3A—C4A 1.346 (6) C5A—H5A 0.9300
N3B—C2B 1.371 (5) C5B—H5B 0.9300
N3B—C4B 1.347 (5) C6A—H6A 0.9300
N4A—C4A 1.324 (6) C6B—H6B 0.9300
Br1···Br2 3.8306 (7) N4A···Br2ii 3.339 (4)
Br1···O2B 3.558 (2) N4A···C4Aiii 3.325 (5)
Br1···N1Bi 3.483 (3) N4B···Br1iv 3.463 (3)
Br1···N4A 3.577 (4) N4B···Br2 3.454 (3)
Br1···N4Bii 3.463 (3) N4B···O2Biv 3.003 (5)
Br2···C5Aiii 3.726 (4) C2B···C6Bv 3.588 (6)
Br2···N4Aiv 3.339 (4) C2B···N1Bv 3.306 (5)
Br2···N4B 3.454 (3) C2B···C2Bv 3.592 (5)
Br2···C6Bi 3.404 (5) C4A···C6Avii 3.387 (6)
Br2···N3A 3.511 (3) C4A···N4Aiii 3.325 (5)
Br2···Br1 3.8306 (7) C4A···C4Aiii 3.520 (6)
Br2···O2A 3.488 (3) C4B···O2A 3.116 (5)
Br1···H6Bv 3.1100 C5A···N1Avii 3.357 (5)
Br1···H2A 2.7400 C5A···Br2iii 3.726 (4)
Br1···H2Bii 3.1900 C5A···Zniii 4.148 (4)
Br1···H3Bii 3.0700 C5A···C6Avii 3.425 (6)
Br1···H1Bi 2.7000 C5B···C5Bix 3.472 (6)
Br2···H2Aiv 3.0900 C6A···C4Avii 3.387 (6)
Br2···H3Aiv 2.9100 C6A···C5Avii 3.425 (6)
Br2···H6Bi 3.2000 C6A···O2Bvii 3.292 (6)
Br2···H2B 2.6500 C6B···O2Bv 3.387 (6)
Br2···H3Aiii 3.2200 C6B···C2Bv 3.588 (6)
Br2···H5Aiii 2.8700 C6B···Br2viii 3.404 (5)
Zn···C5Aiii 4.148 (4) C2A···H1Avi 2.8500
Zn···H2A 2.9100 C5B···H5Bix 3.0400
Zn···H2B 2.8800 H1A···O2Avi 1.9400
Zn···H5Aiii 3.6300 H1A···C2Avi 2.8500
O2A···Br2 3.488 (3) H1B···Br1viii 2.7000
O2A···N3B 2.915 (5) H2A···Br1 2.7400
O2A···C4B 3.116 (5) H2A···Br2ii 3.0900
O2A···N1Avi 2.766 (5) H2A···Zn 2.9100
O2B···C6Bv 3.387 (6) H2B···Br1iv 3.1900
O2B···Br1 3.558 (2) H2B···Br2 2.6500
O2B···N3A 3.257 (5) H2B···Zn 2.8800
O2B···N4Bii 3.003 (5) H3A···Br2ii 2.9100
O2B···C6Avii 3.292 (6) H3A···H5A 2.4000
O2A···H1Avi 1.9400 H3A···Br2iii 3.2200
O2B···H5Bii 2.8600 H3B···Br1iv 3.0700
O2B···H3Bii 2.1900 H3B···O2Biv 2.1900
O2B···H6Avii 2.4200 H3B···H5B 2.3800
N1A···O2Avi 2.766 (5) H5A···H3A 2.4000
N1A···C5Avii 3.357 (5) H5A···Br2iii 2.8700
N1B···Br1viii 3.483 (3) H5A···Zniii 3.6300
N1B···C2Bv 3.306 (5) H5B···O2Biv 2.8600
N3A···Br2 3.511 (3) H5B···H3B 2.3800
N3A···O2B 3.257 (5) H5B···C5Bix 3.0400
N3A···N3B 3.295 (5) H6A···O2Bvii 2.4200
N3B···O2A 2.915 (5) H6B···Br2viii 3.2000
N3B···N3A 3.295 (5) H6B···Br1v 3.1100
N4A···Br1 3.577 (4)
Br1—Zn—Br2 104.31 (2) O2A—C2A—N1A 121.3 (4)
Br1—Zn—N3A 116.18 (9) N1A—C2A—N3A 118.6 (4)
Br1—Zn—N3B 111.56 (10) O2A—C2A—N3A 120.2 (4)
Br2—Zn—N3A 102.82 (9) O2B—C2B—N3B 121.7 (3)
Br2—Zn—N3B 115.31 (9) O2B—C2B—N1B 120.6 (4)
N3A—Zn—N3B 106.66 (13) N1B—C2B—N3B 117.7 (4)
C2A—N1A—C6A 122.6 (4) N3A—C4A—C5A 121.7 (4)
C2B—N1B—C6B 122.4 (4) N3A—C4A—N4A 117.7 (4)
Zn—N3A—C2A 109.0 (3) N4A—C4A—C5A 120.6 (4)
Zn—N3A—C4A 132.0 (3) N4B—C4B—C5B 119.5 (4)
C2A—N3A—C4A 119.0 (4) N3B—C4B—C5B 121.7 (4)
Zn—N3B—C2B 109.3 (2) N3B—C4B—N4B 118.8 (4)
Zn—N3B—C4B 128.1 (3) C4A—C5A—C6A 117.9 (4)
C2B—N3B—C4B 119.9 (3) C4B—C5B—C6B 117.8 (4)
C2A—N1A—H1A 119.00 N1A—C6A—C5A 120.2 (4)
C6A—N1A—H1A 119.00 N1B—C6B—C5B 120.4 (4)
C2B—N1B—H1B 119.00 C4A—C5A—H5A 121.00
C6B—N1B—H1B 119.00 C6A—C5A—H5A 121.00
H2A—N4A—H3A 120.00 C4B—C5B—H5B 121.00
C4A—N4A—H2A 120.00 C6B—C5B—H5B 121.00
C4A—N4A—H3A 120.00 N1A—C6A—H6A 120.00
H2B—N4B—H3B 120.00 C5A—C6A—H6A 120.00
C4B—N4B—H2B 120.00 N1B—C6B—H6B 120.00
C4B—N4B—H3B 120.00 C5B—C6B—H6B 120.00
Br1—Zn—N3A—C2A −176.9 (2) C4A—N3A—C2A—O2A −179.1 (4)
Br1—Zn—N3A—C4A 5.3 (4) C4A—N3A—C2A—N1A 2.1 (6)
Br2—Zn—N3A—C2A 69.9 (3) Zn—N3A—C4A—N4A −5.4 (6)
Br2—Zn—N3A—C4A −107.9 (4) Zn—N3A—C4A—C5A 175.1 (3)
N3B—Zn—N3A—C2A −51.9 (3) C2A—N3A—C4A—N4A 177.1 (4)
N3B—Zn—N3A—C4A 130.4 (4) C2A—N3A—C4A—C5A −2.5 (6)
Br1—Zn—N3B—C2B 70.0 (3) Zn—N3B—C2B—O2B −13.9 (5)
Br1—Zn—N3B—C4B −128.9 (3) Zn—N3B—C2B—N1B 166.2 (3)
Br2—Zn—N3B—C2B −171.3 (2) C4B—N3B—C2B—O2B −176.7 (4)
Br2—Zn—N3B—C4B −10.2 (4) C4B—N3B—C2B—N1B 3.3 (5)
N3A—Zn—N3B—C2B −57.8 (3) Zn—N3B—C4B—N4B 20.3 (5)
N3A—Zn—N3B—C4B 103.2 (3) Zn—N3B—C4B—C5B −160.4 (3)
C6A—N1A—C2A—O2A −179.2 (4) C2B—N3B—C4B—N4B 179.6 (4)
C6A—N1A—C2A—N3A −0.4 (6) C2B—N3B—C4B—C5B −1.1 (6)
C2A—N1A—C6A—C5A −1.0 (6) N3A—C4A—C5A—C6A 1.2 (6)
C6B—N1B—C2B—O2B 175.8 (4) N4A—C4A—C5A—C6A −178.4 (4)
C6B—N1B—C2B—N3B −4.2 (6) N3B—C4B—C5B—C6B −0.4 (6)
C2B—N1B—C6B—C5B 2.8 (7) N4B—C4B—C5B—C6B 178.9 (4)
Zn—N3A—C2A—O2A 2.8 (5) C4A—C5A—C6A—N1A 0.6 (6)
Zn—N3A—C2A—N1A −176.0 (3) C4B—C5B—C6B—N1B −0.4 (7)

Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+2; (vi) −x+2, −y+1, −z+1; (vii) −x+1, −y+1, −z+1; (viii) x, y−1, z; (ix) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O2Avi 0.86 1.94 2.766 (5) 161
N1B—H1B···Br1viii 0.86 2.70 3.483 (3) 151
N4A—H2A···Br1 0.86 2.74 3.577 (4) 165
N4B—H2B···Br2 0.86 2.65 3.454 (3) 155
N4A—H3A···Br2ii 0.86 2.91 3.339 (4) 112
N4B—H3B···O2Biv 0.86 2.19 3.003 (5) 157
C5A—H5A···Br2iii 0.93 2.87 3.726 (4) 153
C6A—H6A···O2Bvii 0.93 2.42 3.292 (6) 156

Symmetry codes: (vi) −x+2, −y+1, −z+1; (viii) x, y−1, z; (ii) x−1, y, z; (iv) x+1, y, z; (iii) −x+1, −y+2, −z+1; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2756).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Lippert, B. (2000). Coord. Chem. Rev.200–202, 487–516.
  4. Muller, J. (2010). Metallomics, 2, 318-327. [DOI] [PubMed]
  5. Muthiah, P. T., Robert, J. J., Raj, S. B., Bocelli, G. & Ollá, R. (2001). Acta Cryst. E57, m558–m560. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049305/hg2756sup1.cif

e-66-m1693-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049305/hg2756Isup2.hkl

e-66-m1693-Isup2.hkl (142.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES