Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3148. doi: 10.1107/S1600536810045381

2-[(E)-1-(4-Meth­oxy­phen­yl)pent-1-en-3-yl­idene]malononitrile

Lian-Mei Chen a, Tai-Ran Kang a,*
PMCID: PMC3011700  PMID: 21589447

Abstract

In the title compound, C15H14N2O, the mol­ecule skeleton displays an approximately planar structure except for the ethyl group [maximum deviation = 0.042 (1) Å]. The meth­oxy­phenyl ring and butanylidenemalononitrile groups are located on opposite sides of the C=C bond, showing an E configuration. Weak inter­molecular C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For the use of malononitrile-containing compounds as building blocks in synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).graphic file with name e-66-o3148-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O

  • M r = 238.28

  • Monoclinic, Inline graphic

  • a = 12.3371 (3) Å

  • b = 8.8832 (2) Å

  • c = 12.8554 (3) Å

  • β = 108.050 (2)°

  • V = 1339.53 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 291 K

  • 0.42 × 0.40 × 0.36 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.787, T max = 0.813

  • 9020 measured reflections

  • 2456 independent reflections

  • 2266 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.05

  • 2456 reflections

  • 165 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045381/xu5082sup1.cif

e-66-o3148-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045381/xu5082Isup2.hkl

e-66-o3148-Isup2.hkl (120.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.93 2.62 3.5285 (19) 167 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Testing Centre of Sichuan University for the diffraction measurements. We are grateful for financial support from China West Normal University (No. 412374).

supplementary crystallographic information

Comment

The chemistry of ylidene malononitrile have been studied extensively, from the ring closure reactions, the comounds containing newly formed five or six-membered rings, such as indans (Zhang et al.2003), naphthalenes (Liu, et al.2002), benzenes (Sepiol et al.1985) were obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our labratory (Kang et al., 2009). As a part of our interest in the synthsis of some complex ring systems, we investigated the title compound (I), which is a diene reagent in Diels-Alder reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The phenyl ring with two double bond and triple bond is co-planar. The crystal packing is stabilized by C—H···N hydrogen bonding (Table 1).

Experimental

2-(Butan-2-ylidene)malononitrile (0.24 g 2 mmol) and 4-methoxy -benzaldehyde (0.272 g 2 mmol) were dissolved in 2-propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol), the solution was stirred for 24 h at 343 K. Then the solution was cooled to room temperature, and was filtered to obtain a yellow solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation ethanol solvent.

Refinement

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and Uiso(H) =1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C15H14N2O F(000) = 504
Mr = 238.28 Dx = 1.182 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 6882 reflections
a = 12.3371 (3) Å θ = 3.6–69.4°
b = 8.8832 (2) Å µ = 0.60 mm1
c = 12.8554 (3) Å T = 291 K
β = 108.050 (2)° Block, yellow
V = 1339.53 (5) Å3 0.42 × 0.40 × 0.36 mm
Z = 4

Data collection

Oxford Diffraction Gemini S Ultra diffractometer 2456 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2266 reflections with I > 2σ(I)
mirror Rint = 0.014
Detector resolution: 15.9149 pixels mm-1 θmax = 69.6°, θmin = 4.3°
ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −10→10
Tmin = 0.787, Tmax = 0.813 l = −15→8
9020 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1456P] where P = (Fo2 + 2Fc2)/3
2456 reflections (Δ/σ)max < 0.001
165 parameters Δρmax = 0.11 e Å3
3 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09486 (7) −0.22305 (10) 0.03379 (7) 0.0668 (3)
C14 −0.13644 (11) 0.27243 (16) 0.51588 (10) 0.0646 (3)
C7 0.13090 (9) 0.13033 (12) 0.40443 (8) 0.0486 (3)
H7 0.2053 0.1581 0.4428 0.058*
C2 −0.00061 (9) −0.10045 (13) 0.15020 (9) 0.0534 (3)
H2 −0.0720 −0.1348 0.1083 0.064*
C8 0.04916 (9) 0.17842 (13) 0.44506 (8) 0.0505 (3)
H8 −0.0254 0.1492 0.4090 0.061*
C4 0.11576 (9) 0.03969 (11) 0.30705 (8) 0.0464 (3)
C5 0.21124 (9) 0.00232 (14) 0.27569 (10) 0.0559 (3)
H5 0.2828 0.0364 0.3174 0.067*
C1 0.09578 (9) −0.13673 (12) 0.12143 (9) 0.0512 (3)
C3 0.01045 (9) −0.01297 (13) 0.24151 (9) 0.0525 (3)
H3 −0.0546 0.0117 0.2599 0.063*
C6 0.20146 (9) −0.08369 (14) 0.18453 (10) 0.0611 (3)
H6 0.2661 −0.1066 0.1649 0.073*
C9 0.06860 (9) 0.27216 (12) 0.54059 (9) 0.0507 (3)
N1 −0.22774 (11) 0.23824 (19) 0.46897 (11) 0.0962 (5)
C12 −0.02183 (10) 0.31596 (13) 0.57378 (9) 0.0552 (3)
N2 −0.00312 (13) 0.48196 (17) 0.74197 (12) 0.0955 (4)
C10 0.18745 (10) 0.31909 (15) 0.60535 (10) 0.0640 (3)
H10A 0.1837 0.4087 0.6472 0.077*
H10B 0.2297 0.3441 0.5554 0.077*
C15 −0.01196 (12) −0.28321 (15) −0.03201 (11) 0.0687 (4)
H15A −0.0445 −0.3435 0.0128 0.103*
H15B −0.0002 −0.3444 −0.0891 0.103*
H15C −0.0629 −0.2022 −0.0638 0.103*
C13 −0.00959 (11) 0.40823 (15) 0.66777 (11) 0.0670 (3)
C11 0.25010 (13) 0.1964 (2) 0.68261 (12) 0.0890 (5)
H11A 0.2143 0.1807 0.7382 0.133*
H11B 0.3280 0.2260 0.7161 0.133*
H11C 0.2477 0.1047 0.6424 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0564 (5) 0.0802 (6) 0.0658 (5) 0.0005 (4) 0.0219 (4) −0.0264 (4)
C14 0.0545 (6) 0.0853 (9) 0.0560 (7) 0.0201 (5) 0.0199 (5) 0.0060 (5)
C7 0.0477 (5) 0.0515 (6) 0.0483 (5) −0.0039 (4) 0.0173 (4) −0.0007 (4)
C2 0.0417 (5) 0.0614 (6) 0.0569 (6) −0.0034 (5) 0.0150 (4) −0.0094 (5)
C8 0.0483 (6) 0.0564 (6) 0.0481 (6) 0.0002 (4) 0.0167 (4) −0.0022 (5)
C4 0.0451 (5) 0.0490 (5) 0.0476 (5) −0.0006 (4) 0.0179 (4) 0.0000 (4)
C5 0.0405 (5) 0.0666 (7) 0.0609 (6) −0.0030 (5) 0.0163 (5) −0.0113 (5)
C1 0.0505 (6) 0.0527 (6) 0.0526 (6) 0.0020 (5) 0.0194 (5) −0.0070 (5)
C3 0.0426 (5) 0.0620 (6) 0.0576 (6) −0.0014 (5) 0.0225 (5) −0.0076 (5)
C6 0.0444 (6) 0.0742 (8) 0.0697 (7) 0.0008 (5) 0.0250 (5) −0.0176 (6)
C9 0.0556 (6) 0.0511 (6) 0.0487 (6) 0.0024 (4) 0.0209 (5) 0.0016 (4)
N1 0.0536 (7) 0.1471 (13) 0.0840 (8) 0.0179 (7) 0.0154 (6) 0.0044 (8)
C12 0.0588 (6) 0.0598 (6) 0.0503 (6) 0.0116 (5) 0.0215 (5) 0.0034 (4)
N2 0.1005 (10) 0.1055 (10) 0.0906 (9) 0.0068 (8) 0.0443 (8) −0.0336 (8)
C10 0.0619 (7) 0.0708 (7) 0.0652 (7) −0.0132 (6) 0.0284 (6) −0.0197 (6)
C15 0.0699 (8) 0.0710 (8) 0.0633 (7) −0.0060 (6) 0.0179 (6) −0.0210 (6)
C13 0.0705 (8) 0.0706 (8) 0.0664 (7) 0.0122 (6) 0.0308 (6) −0.0064 (6)
C11 0.0617 (8) 0.1201 (13) 0.0720 (9) −0.0096 (8) 0.0015 (7) −0.0004 (9)

Geometric parameters (Å, °)

O1—C1 1.3600 (13) C1—C6 1.3873 (15)
O1—C15 1.4308 (15) C3—H3 0.9300
C14—N1 1.1417 (18) C6—H6 0.9300
C14—C12 1.4321 (18) C9—C12 1.3686 (15)
C7—C8 1.3412 (15) C9—C10 1.5035 (16)
C7—C4 1.4510 (14) C12—C13 1.4289 (16)
C7—H7 0.9300 N2—C13 1.1393 (17)
C2—C3 1.3788 (15) C10—C11 1.516 (2)
C2—C1 1.3883 (14) C10—H10A 0.9700
C2—H2 0.9300 C10—H10B 0.9700
C8—C9 1.4410 (15) C15—H15A 0.9600
C8—H8 0.9300 C15—H15B 0.9600
C4—C3 1.3923 (15) C15—H15C 0.9600
C4—C5 1.3980 (15) C11—H11A 0.9600
C5—C6 1.3727 (16) C11—H11B 0.9600
C5—H5 0.9300 C11—H11C 0.9600
C1—O1—C15 118.04 (9) C12—C9—C8 119.57 (10)
N1—C14—C12 179.45 (15) C12—C9—C10 119.86 (10)
C8—C7—C4 126.97 (10) C8—C9—C10 120.56 (9)
C8—C7—H7 116.5 C9—C12—C13 122.96 (11)
C4—C7—H7 116.5 C9—C12—C14 122.01 (11)
C3—C2—C1 119.38 (10) C13—C12—C14 115.03 (10)
C3—C2—H2 120.3 C9—C10—C11 112.04 (11)
C1—C2—H2 120.3 C9—C10—H10A 109.2
C7—C8—C9 124.70 (10) C11—C10—H10A 109.2
C7—C8—H8 117.7 C9—C10—H10B 109.2
C9—C8—H8 117.7 C11—C10—H10B 109.2
C3—C4—C5 117.22 (10) H10A—C10—H10B 107.9
C3—C4—C7 123.72 (9) O1—C15—H15A 109.5
C5—C4—C7 119.06 (10) O1—C15—H15B 109.5
C6—C5—C4 121.29 (10) H15A—C15—H15B 109.5
C6—C5—H5 119.4 O1—C15—H15C 109.5
C4—C5—H5 119.4 H15A—C15—H15C 109.5
O1—C1—C6 116.17 (9) H15B—C15—H15C 109.5
O1—C1—C2 124.31 (10) N2—C13—C12 178.06 (14)
C6—C1—C2 119.53 (10) C10—C11—H11A 109.5
C2—C3—C4 122.15 (9) C10—C11—H11B 109.5
C2—C3—H3 118.9 H11A—C11—H11B 109.5
C4—C3—H3 118.9 C10—C11—H11C 109.5
C5—C6—C1 120.42 (10) H11A—C11—H11C 109.5
C5—C6—H6 119.8 H11B—C11—H11C 109.5
C1—C6—H6 119.8
C4—C7—C8—C9 −178.09 (10) C4—C5—C6—C1 −0.5 (2)
C8—C7—C4—C3 −1.00 (18) O1—C1—C6—C5 −178.94 (11)
C8—C7—C4—C5 178.78 (11) C2—C1—C6—C5 0.91 (19)
C3—C4—C5—C6 −0.49 (18) C7—C8—C9—C12 179.18 (11)
C7—C4—C5—C6 179.72 (10) C7—C8—C9—C10 −2.24 (17)
C15—O1—C1—C6 178.49 (11) C8—C9—C12—C13 179.74 (10)
C15—O1—C1—C2 −1.35 (17) C10—C9—C12—C13 1.14 (18)
C3—C2—C1—O1 179.44 (10) C8—C9—C12—C14 −0.48 (18)
C3—C2—C1—C6 −0.40 (18) C10—C9—C12—C14 −179.08 (11)
C1—C2—C3—C4 −0.58 (18) C12—C9—C10—C11 98.07 (14)
C5—C4—C3—C2 1.01 (17) C8—C9—C10—C11 −80.51 (14)
C7—C4—C3—C2 −179.20 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···N1i 0.93 2.62 3.5285 (19) 167 (1)

Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5082).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Kang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164. [DOI] [PMC free article] [PubMed]
  3. Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem.67, 7019–7028. [DOI] [PubMed]
  4. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261–5265.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhang, B., Zhu, X.-Q., Lu, J.-Y., He, J., Wang, P.-G. & Cheng, J.-P. (2003). J. Org. Chem.68, 3295–3298. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045381/xu5082sup1.cif

e-66-o3148-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045381/xu5082Isup2.hkl

e-66-o3148-Isup2.hkl (120.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES