Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 30;66(Pt 12):m1694–m1695. doi: 10.1107/S1600536810048518

Poly[[triaqua­(μ3-4-oxidopyridine-2,6-dicarboxyl­ato)europium(III)] monohydrate]

Dong-Yu Lv a,*, Zhu-Qing Gao b, Jin-Zhong Gu a
PMCID: PMC3011704  PMID: 21589349

Abstract

In the title coordination polymer, {[Eu(C7H2NO5)(H2O)3]·H2O}n, the EuIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxyl­ate (hpc) trianion, two monodentate hpc anions and three water mol­ecules, forming a distorted bicapped trigonal–prismatic coordination geometry. The hpc ligands bridge adjacent EuIII ions, forming infinite double chains. Adjacent chains are further connected by hpc ligands into sheets. O—H⋯O hydrogen bonds then generate a three-dimensional supra­molecular framework.

Related literature

For the structures and properties of lanthanide coordination compounds, see: He et al. (2010); Kustaryono et al. (2010); Zhu, Sun et al. (2009); Wong et al. (2006). For the use of multi-carboxyl­ate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008) and for the dicarboxyl­ate ligand H3CAM (H3CAM is 4-hy­droxy-pyridine-2,6-dicarb­oxy­lic acid), see: Gao et al. (2006, 2008). For the isotypic structure {[Dy(CAM)(H2O)3]·H2O}n, see: Gao et al. (2006). For bond lengths and angles in other complexes with eight-coordinate EuIII, see: Li et al. (2008); Zhu, Ikarashi et al. (2009) graphic file with name e-66-m1694-scheme1.jpg

Experimental

Crystal data

  • [Eu(C7H2NO5)(H2O)3]·H2O

  • M r = 404.12

  • Monoclinic, Inline graphic

  • a = 10.0041 (15) Å

  • b = 7.5456 (11) Å

  • c = 15.528 (2) Å

  • β = 104.890 (1)°

  • V = 1132.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.58 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.31 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.246, T max = 0.277

  • 4884 measured reflections

  • 2023 independent reflections

  • 1856 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.065

  • S = 1.06

  • 2023 reflections

  • 196 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.69 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL .

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048518/hb5735sup1.cif

e-66-m1694-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048518/hb5735Isup2.hkl

e-66-m1694-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Eu1—O5i 2.327 (2)
Eu1—O8 2.401 (3)
Eu1—O7 2.416 (3)
Eu1—O1 2.432 (2)
Eu1—O2ii 2.433 (2)
Eu1—O3 2.440 (2)
Eu1—O6 2.445 (3)
Eu1—N1 2.498 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1W⋯O9iii 0.90 (2) 1.85 (3) 2.696 (3) 158 (4)
O6—H2W⋯O9iv 0.87 (2) 2.15 (3) 2.962 (4) 156 (4)
O7—H4W⋯O3iii 0.86 (2) 2.09 (3) 2.805 (3) 141 (4)
O8—H5W⋯O1ii 0.86 (2) 1.84 (2) 2.684 (4) 168 (4)
O8—H6W⋯O4v 0.87 (2) 1.83 (2) 2.696 (4) 173 (4)
O9—H7W⋯O2vi 0.86 (2) 2.26 (3) 3.059 (4) 155 (5)
O9—H8W⋯O4 0.86 (2) 1.84 (2) 2.692 (4) 172 (6)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

The design and synthesis of lanthanide coordination polymers have achieved great progress over the past decades(He et al., 2010; Kustaryono et al., 2010). These coordination polymers have shown not only their versatile architectures but also their desirable properties luminescent, magnetic, catalytic, and gas absorption and separation properties (Zhu et al., 2009; Wong et al., 2006). Many multi-carboxylate or heterocylic carboxylic acids are used for this purpose (Li et al., 2008; Luo et al., 2008). In the designed synthesis of the lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid (H3CAM) is an excellent pyridine dicarboxylate ligand (Gao et al., 2006; Gao et al., 2008),which can afford at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we designed and synthesized one lanthanidecoordination polymer [Eu(CAM)(H2O)3]n.nH2O, and report its structure here.

The title compound is located on a twofold helical axis of symmetry, which is isomorphous with {[Dy(CAM)(H2O)3].H2O}n (Gao et al., 2006). As shown in Fig.1, the asymmetrical unit of the cell contains one Eu (III) ion, one CAM liangd, three coordinated water molecules, and one guest water molecule. Eu atom is eight-coordinated with seven oxygen atoms from three individual CAM ligands and three coordinated water molecules and one nitrogen atom from the CAM ligand, forming a distorted bicapped square-prismatic coordination geometry.

Important bond distances and angles are presented in Table 1. The Eu–O bond distances [2.327 (2) to 2.445 (3) Å]are shorter than the Eu–N bond distance [2.498 (3) Å], which are in good with those observed in other Eu (III) complexes (Li et al., 2008; Zhu et al., 2009). The CAM ligands adopt a µ3-pentadentate coordination mode, as shown in Fig.1. The CAM ligands bridge the adjacent EuIII ions to form infinite double chains (Fig.2). The adjacent chains are further connected by the coordination of the CAMligands and EuIII ions to form two-dimensional sheet (Fig.3), which are further extended into three-dimensional supramolecular frameworks through H-bond interactions (Table 4).

Experimental

To a solution of europium nitrate hexahydrate (0.134 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded colourless blocks in ca 60% yield. Anal. Calcd for C7H10EuNO9: C, 20.80; H, 2.49; N, 3.47. Found: C, 20.51; H, 2.77; N, 3.12.

Refinement

The coordinated water H atoms were located in a different Fourier map and refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms attached to oxygen atoms were placed at calculated positions and refined with the riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

A drawing of the asymmetric unit in the structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the b axis, showing a one-dimensional double chain of [Eu(CAM)(H2O)3].

Fig. 3.

Fig. 3.

A view along the a axis, showing a two-dimensional sheet of [Eu(CAM)(H2O)3].

Crystal data

[Eu(C7H2NO5)(H2O)3]·H2O F(000) = 776
Mr = 404.12 Dx = 2.370 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3455 reflections
a = 10.0041 (15) Å θ = 2.8–28.3°
b = 7.5456 (11) Å µ = 5.58 mm1
c = 15.528 (2) Å T = 296 K
β = 104.890 (1)° Block, colorless
V = 1132.8 (3) Å3 0.35 × 0.32 × 0.31 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2023 independent reflections
Radiation source: fine-focus sealed tube 1856 reflections with I > 2σ(I)
graphite Rint = 0.074
φ and ω scans θmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −11→12
Tmin = 0.246, Tmax = 0.277 k = −9→7
4884 measured reflections l = −14→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + 0.5803P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2023 reflections Δρmax = 0.82 e Å3
196 parameters Δρmin = −1.69 e Å3
12 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0273 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Eu1 0.500412 (13) 0.82415 (2) 0.746168 (10) 0.01204 (13)
C1 0.7849 (3) 0.5972 (4) 0.8389 (2) 0.0179 (7)
C2 0.7266 (3) 0.6188 (4) 0.9168 (2) 0.0159 (7)
C3 0.7942 (3) 0.5648 (4) 1.0015 (2) 0.0168 (7)
H3 0.8789 0.5069 1.0112 0.020*
H5 0.5632 0.7067 1.0980 0.020*
C4 0.7362 (3) 0.5967 (4) 1.0731 (2) 0.0153 (7)
C5 0.6069 (3) 0.6829 (4) 1.0528 (2) 0.0164 (8)
C6 0.5456 (3) 0.7327 (4) 0.9664 (2) 0.0142 (7)
C7 0.4087 (3) 0.8280 (4) 0.9380 (2) 0.0163 (8)
H1W 0.492 (5) 0.543 (3) 0.609 (3) 0.073 (17)*
H2W 0.536 (5) 0.692 (5) 0.567 (3) 0.060 (17)*
H3W 0.327 (5) 0.552 (7) 0.785 (2) 0.08 (2)*
H4W 0.315 (4) 0.511 (6) 0.6919 (18) 0.071 (17)*
H5W 0.660 (4) 1.125 (6) 0.802 (2) 0.069 (17)*
H6W 0.623 (4) 1.093 (6) 0.8862 (12) 0.047 (13)*
H7W 0.034 (5) 0.735 (6) 0.899 (4) 0.11 (2)*
H8W 0.155 (2) 0.835 (6) 0.949 (4) 0.078 (19)*
N1 0.6033 (3) 0.7025 (3) 0.89845 (18) 0.0151 (6)
O1 0.7227 (3) 0.6764 (3) 0.76842 (16) 0.0270 (7)
O2 0.8922 (2) 0.5058 (3) 0.84687 (15) 0.0234 (6)
O3 0.3689 (2) 0.8704 (3) 0.85661 (15) 0.0211 (5)
O4 0.3426 (2) 0.8572 (3) 0.99465 (16) 0.0245 (6)
O5 0.8011 (2) 0.5511 (3) 1.15508 (14) 0.0202 (5)
O6 0.5004 (3) 0.6614 (3) 0.61007 (18) 0.0275 (6)
O7 0.3631 (3) 0.5587 (4) 0.73985 (19) 0.0323 (7)
O8 0.6026 (3) 1.0809 (4) 0.82870 (18) 0.0319 (7)
O9 0.0664 (3) 0.8216 (3) 0.9349 (2) 0.0367 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.01379 (17) 0.01728 (17) 0.00543 (16) 0.00006 (5) 0.00313 (11) 0.00080 (5)
C1 0.0194 (16) 0.0240 (17) 0.0107 (17) 0.0022 (14) 0.0047 (14) −0.0012 (14)
C2 0.0192 (16) 0.0166 (16) 0.0130 (17) 0.0000 (13) 0.0060 (14) 0.0001 (14)
C3 0.0189 (16) 0.0193 (16) 0.0119 (16) 0.0030 (13) 0.0031 (14) 0.0014 (13)
C4 0.0194 (15) 0.0171 (16) 0.0079 (16) −0.0042 (13) 0.0010 (13) 0.0026 (13)
C5 0.0186 (17) 0.0243 (18) 0.0094 (17) −0.0032 (12) 0.0092 (14) −0.0015 (13)
C6 0.0195 (17) 0.0153 (15) 0.0094 (16) −0.0007 (13) 0.0068 (14) −0.0007 (13)
C7 0.0180 (17) 0.0193 (17) 0.0109 (18) −0.0021 (13) 0.0028 (15) −0.0021 (13)
N1 0.0175 (14) 0.0206 (13) 0.0071 (14) 0.0027 (11) 0.0033 (12) 0.0021 (11)
O1 0.0276 (14) 0.0468 (17) 0.0090 (13) 0.0166 (11) 0.0092 (11) 0.0085 (11)
O2 0.0241 (13) 0.0330 (14) 0.0128 (12) 0.0135 (11) 0.0043 (10) −0.0014 (11)
O3 0.0201 (11) 0.0338 (13) 0.0094 (12) 0.0077 (11) 0.0041 (10) 0.0031 (11)
O4 0.0236 (12) 0.0419 (15) 0.0110 (13) 0.0061 (11) 0.0097 (11) −0.0009 (11)
O5 0.0206 (11) 0.0305 (13) 0.0087 (12) −0.0030 (10) 0.0021 (10) 0.0042 (10)
O6 0.0423 (17) 0.0266 (15) 0.0169 (15) −0.0036 (12) 0.0135 (14) −0.0033 (11)
O7 0.0413 (16) 0.0376 (16) 0.0212 (15) −0.0181 (13) 0.0141 (14) −0.0058 (13)
O8 0.0451 (16) 0.0393 (16) 0.0164 (14) −0.0194 (14) 0.0172 (13) −0.0085 (12)
O9 0.0278 (16) 0.0311 (16) 0.049 (2) 0.0034 (12) 0.0062 (15) 0.0025 (13)

Geometric parameters (Å, °)

Eu1—O5i 2.327 (2) C5—C6 1.377 (4)
Eu1—O8 2.401 (3) C5—H5 0.9344
Eu1—O7 2.416 (3) C6—N1 1.345 (4)
Eu1—O1 2.432 (2) C6—C7 1.509 (4)
Eu1—O2ii 2.433 (2) C7—O4 1.249 (4)
Eu1—O3 2.440 (2) C7—O3 1.264 (4)
Eu1—O6 2.445 (3) O2—Eu1iii 2.433 (2)
Eu1—N1 2.498 (3) O5—Eu1iv 2.327 (2)
C1—O2 1.255 (4) O6—H1W 0.895 (19)
C1—O1 1.262 (4) O6—H2W 0.867 (19)
C1—C2 1.481 (5) O7—H3W 0.871 (19)
C2—N1 1.350 (4) O7—H4W 0.856 (19)
C2—C3 1.376 (4) O8—H5W 0.855 (19)
C3—C4 1.402 (5) O8—H6W 0.868 (18)
C3—H3 0.9300 O9—H7W 0.861 (19)
C4—O5 1.317 (3) O9—H8W 0.861 (19)
C4—C5 1.410 (4)
O5i—Eu1—O8 100.29 (9) O2—C1—C2 119.1 (3)
O5i—Eu1—O7 85.49 (9) O1—C1—C2 116.5 (3)
O8—Eu1—O7 148.21 (10) N1—C2—C3 122.6 (3)
O5i—Eu1—O1 151.83 (8) N1—C2—C1 114.1 (3)
O8—Eu1—O1 92.61 (9) C3—C2—C1 123.2 (3)
O7—Eu1—O1 96.63 (9) C2—C3—C4 120.4 (3)
O5i—Eu1—O2ii 81.44 (8) C2—C3—H3 119.8
O8—Eu1—O2ii 70.73 (9) C4—C3—H3 119.8
O7—Eu1—O2ii 140.91 (9) O5—C4—C3 121.4 (3)
O1—Eu1—O2ii 79.36 (8) O5—C4—C5 122.2 (3)
O5i—Eu1—O3 80.61 (8) C3—C4—C5 116.4 (3)
O8—Eu1—O3 75.04 (9) C6—C5—C4 119.8 (3)
O7—Eu1—O3 75.15 (9) C6—C5—H5 120.2
O1—Eu1—O3 127.18 (8) C4—C5—H5 120.0
O2ii—Eu1—O3 137.46 (8) N1—C6—C5 123.0 (3)
O5i—Eu1—O6 82.43 (9) N1—C6—C7 113.1 (3)
O8—Eu1—O6 140.55 (10) C5—C6—C7 123.9 (3)
O7—Eu1—O6 71.01 (10) O4—C7—O3 124.9 (3)
O1—Eu1—O6 71.90 (9) O4—C7—C6 118.9 (3)
O2ii—Eu1—O6 70.83 (9) O3—C7—C6 116.2 (3)
O3—Eu1—O6 143.08 (9) C6—N1—C2 117.8 (3)
O5i—Eu1—N1 143.53 (9) C6—N1—Eu1 121.6 (2)
O8—Eu1—N1 77.05 (9) C2—N1—Eu1 120.3 (2)
O7—Eu1—N1 79.95 (9) C1—O1—Eu1 124.7 (2)
O1—Eu1—N1 63.77 (9) C1—O2—Eu1iii 138.4 (2)
O2ii—Eu1—N1 129.18 (9) C7—O3—Eu1 125.3 (2)
O3—Eu1—N1 63.42 (8) C4—O5—Eu1iv 127.88 (19)
O6—Eu1—N1 122.83 (9) Eu1—O6—H1W 119 (3)
O5i—Eu1—H5W 101.3 (10) Eu1—O6—H2W 129 (3)
O8—Eu1—H5W 17.0 (6) H1W—O6—H2W 108 (3)
O7—Eu1—H5W 164.4 (6) Eu1—O7—H3W 111 (3)
O1—Eu1—H5W 84.1 (10) Eu1—O7—H4W 125 (3)
O2ii—Eu1—H5W 54.6 (6) H3W—O7—H4W 115 (3)
O3—Eu1—H5W 91.9 (6) Eu1—O8—H5W 108 (3)
O6—Eu1—H5W 123.6 (6) Eu1—O8—H6W 126 (3)
N1—Eu1—H5W 86.4 (8) H5W—O8—H6W 116 (3)
O2—C1—O1 124.4 (3) H7W—O9—H8W 116 (3)
O2—C1—C2—N1 −173.0 (3) O6—Eu1—N1—C6 −143.3 (2)
O1—C1—C2—N1 8.2 (4) O5i—Eu1—N1—C2 170.8 (2)
O2—C1—C2—C3 9.4 (5) O8—Eu1—N1—C2 −99.4 (2)
O1—C1—C2—C3 −169.3 (3) O7—Eu1—N1—C2 102.7 (2)
N1—C2—C3—C4 −0.4 (5) O1—Eu1—N1—C2 0.1 (2)
C1—C2—C3—C4 177.0 (3) O2ii—Eu1—N1—C2 −48.0 (3)
C2—C3—C4—O5 −177.9 (3) O3—Eu1—N1—C2 −178.9 (3)
C2—C3—C4—C5 0.9 (5) O6—Eu1—N1—C2 43.2 (3)
O5—C4—C5—C6 178.0 (3) O2—C1—O1—Eu1 172.3 (2)
C3—C4—C5—C6 −0.8 (4) C2—C1—O1—Eu1 −9.0 (4)
C4—C5—C6—N1 0.2 (5) O5i—Eu1—O1—C1 −163.2 (2)
C4—C5—C6—C7 −179.0 (3) O8—Eu1—O1—C1 79.2 (3)
N1—C6—C7—O4 177.2 (3) O7—Eu1—O1—C1 −70.3 (3)
C5—C6—C7—O4 −3.5 (5) O2ii—Eu1—O1—C1 149.0 (3)
N1—C6—C7—O3 −1.8 (4) O3—Eu1—O1—C1 6.0 (3)
C5—C6—C7—O3 177.4 (3) O6—Eu1—O1—C1 −137.8 (3)
C5—C6—N1—C2 0.3 (5) N1—Eu1—O1—C1 5.0 (3)
C7—C6—N1—C2 179.6 (3) O1—C1—O2—Eu1iii −29.7 (5)
C5—C6—N1—Eu1 −173.3 (2) C2—C1—O2—Eu1iii 151.6 (2)
C7—C6—N1—Eu1 6.0 (4) O4—C7—O3—Eu1 177.6 (2)
C3—C2—N1—C6 −0.2 (5) C6—C7—O3—Eu1 −3.4 (4)
C1—C2—N1—C6 −177.8 (3) O5i—Eu1—O3—C7 178.4 (3)
C3—C2—N1—Eu1 173.5 (2) O8—Eu1—O3—C7 −78.2 (3)
C1—C2—N1—Eu1 −4.1 (4) O7—Eu1—O3—C7 90.6 (3)
O5i—Eu1—N1—C6 −15.8 (3) O1—Eu1—O3—C7 3.6 (3)
O8—Eu1—N1—C6 74.1 (2) O2ii—Eu1—O3—C7 −115.4 (2)
O7—Eu1—N1—C6 −83.8 (2) O6—Eu1—O3—C7 114.7 (2)
O1—Eu1—N1—C6 173.6 (3) N1—Eu1—O3—C7 4.6 (2)
O2ii—Eu1—N1—C6 125.5 (2) C3—C4—O5—Eu1iv 69.8 (4)
O3—Eu1—N1—C6 −5.5 (2) C5—C4—O5—Eu1iv −108.9 (3)

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x+1/2, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H1W···O9v 0.90 (2) 1.85 (3) 2.696 (3) 158 (4)
O6—H2W···O9vi 0.87 (2) 2.15 (3) 2.962 (4) 156 (4)
O7—H4W···O3v 0.86 (2) 2.09 (3) 2.805 (3) 141 (4)
O8—H5W···O1ii 0.86 (2) 1.84 (2) 2.684 (4) 168 (4)
O8—H6W···O4vii 0.87 (2) 1.83 (2) 2.696 (4) 173 (4)
O9—H7W···O2viii 0.86 (2) 2.26 (3) 3.059 (4) 155 (5)
O9—H8W···O4 0.86 (2) 1.84 (2) 2.692 (4) 172 (6)

Symmetry codes: (v) −x+1/2, y−1/2, −z+3/2; (vi) x+1/2, −y+3/2, z−1/2; (ii) −x+3/2, y+1/2, −z+3/2; (vii) −x+1, −y+2, −z+2; (viii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5735).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & &Yan, S. P. (2006). Inorg. Chem.45, 5980–5988. [DOI] [PubMed]
  3. Gao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & &Yan, S. P. (2008). Inorg. Chem.47, 11057–11061. [DOI] [PubMed]
  4. He, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem.49, 7605–7607. [DOI] [PubMed]
  5. Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des.10, 775–781.
  6. Li, X., Zhang, Y. B., Shi, W. & &Li, P. Z. (2008). Inorg. Chem. Commun.11, 869–872.
  7. Luo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des.8, 2006–2010.
  8. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  9. Wong, K. L., Law, G. L., Yang, Y. Y. & Wong, W. T. (2006). Adv. Mater.18, 1051–1054.
  10. Zhu, T. Y., Ikarashi, K., Ishigaki, T., Uematsu, K., Toda, K., Okawa, H. & Sato, M. (2009). Inorg. Chim. Acta, 362, 3407–3414.
  11. Zhu, Y. Y., Sun, Z. G., Chen, H., Zhang, J., Zhao, Y., Zhang, N., Liu, L., Lu, X., Wang, W. N., Tong, F. & Zhang, L. C. (2009). Cryst. Growth Des.9, 3228–3234.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048518/hb5735sup1.cif

e-66-m1694-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048518/hb5735Isup2.hkl

e-66-m1694-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES