Abstract
In the crystal structure of the title compound, C27H39N2 +·I3 −, the imidazolidinium ring is perpendicular to a mirror plane which bisects the cation. The dihedral angle between the imidazolidinium ring and the benzene ring is 89.0 (2)°. The triiodide anion also lies on a mirror plane and is almost linear with an I—I—I bond angle of 178.309 (18)°.
Related literature
For a related structure with a 1,3-(2,6-diisopropylphenyl)imidazolidinium unit, see: Giffin et al. (2010 ▶). For its synthesis, see: Llewellyn et al. (2006 ▶).
Experimental
Crystal data
C27H39N2 +·I3 −
M r = 772.30
Monoclinic,
a = 18.0288 (5) Å
b = 15.4554 (5) Å
c = 13.8457 (6) Å
β = 129.456 (1)°
V = 2978.81 (18) Å3
Z = 4
Mo Kα radiation
μ = 3.16 mm−1
T = 173 K
0.39 × 0.22 × 0.14 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: integration (XPREP; Bruker, 2005 ▶) T min = 0.438, T max = 0.642
12244 measured reflections
3772 independent reflections
2536 reflections with I > 2σ(I)
R int = 0.048
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.122
S = 0.97
3772 reflections
155 parameters
H-atom parameters constrained
Δρmax = 1.92 e Å−3
Δρmin = −1.30 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045228/is2624sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045228/is2624Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We wish to thank Dr Manuel Fernandes for the data collection and the University KwaZulu-Natal and the NRF for financial support.
supplementary crystallographic information
Comment
We were using a general synthetic method that involved the deprotonation of N-heterocyclic carbene (NHC) salts with strong bases to generate free carbenes, followed by in situ metalation with an iron(II) precursor to generate iron(II) based NHC complexes. In order to obtain piano stool type compounds, η5-CpFe(CO)2I was used as the iron(II) precursor. Piano-stool type complexes are of interest due to their outstanding spectroscopic and structural features which has made them the subject of many elegant studies in the past. But in this instance, the title compound C27H39N2I3, (I), was obtained as a triiodide adduct of the protonated NHC ligand. A molecule of the cationic NHC is characterized by a bisecting mirror plane, while the triiodide counterion is symmetrical around the central iodine atom I2. The imidazolidinium ring is nearly orthogonal to the phenyl rings of the N-substituents with torsion angles N13–N1–C1–C6 close to 90°. The triiodide counterion is linear.
Experimental
To a suspension of 1,3-bis(2,6-diisopropylphenyl)imidazolidinium chloride (0.1 g) in dry THF (15 ml) was added potassium tert-butoxide (0.031 g). After 1 h, this solution was added to a solution of [η5-CpFe(CO)2I] (0.07 g) in dry toluene (40 ml). After stirring for 20 hrs, the resulting precipitate was centrifuged and washed once with dry toluene (30 ml). The toluene extracts were combined and left standing in air to form shiny black crystals of (I).
Refinement
Hydrogen atoms were first located in a difference map and then positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their respective parent atoms. The highest peak and the deepest hole in the difference Fourier map are located 0.87 and 0.65 Å, respectively, from atom I3.
Figures
Fig. 1.
Molecular structure of the title compound with the atom labelling scheme for non-hydrogen atoms. Ellipsoids are drawn at the 50% probability level. All H atoms have been omitted.
Crystal data
| C27H39N2+·I3− | F(000) = 1496 |
| Mr = 772.30 | Dx = 1.722 Mg m−3 |
| Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2y | Cell parameters from 3850 reflections |
| a = 18.0288 (5) Å | θ = 2.9–28.1° |
| b = 15.4554 (5) Å | µ = 3.16 mm−1 |
| c = 13.8457 (6) Å | T = 173 K |
| β = 129.456 (1)° | Block, brown |
| V = 2978.81 (18) Å3 | 0.39 × 0.22 × 0.14 mm |
| Z = 4 |
Data collection
| Bruker APEXII CCD diffractometer | 3772 independent reflections |
| Radiation source: fine-focus sealed tube | 2536 reflections with I > 2σ(I) |
| graphite | Rint = 0.048 |
| φ and ω scans | θmax = 28.3°, θmin = 1.9° |
| Absorption correction: integration (XPREP; Bruker, 2005) | h = −17→24 |
| Tmin = 0.438, Tmax = 0.642 | k = −20→18 |
| 12244 measured reflections | l = −18→11 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.122 | H-atom parameters constrained |
| S = 0.97 | w = 1/[σ2(Fo2) + (0.065P)2 + 5.5612P] where P = (Fo2 + 2Fc2)/3 |
| 3772 reflections | (Δ/σ)max = 0.026 |
| 155 parameters | Δρmax = 1.92 e Å−3 |
| 0 restraints | Δρmin = −1.30 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.3529 (2) | 0.3426 (2) | 0.2270 (3) | 0.0250 (7) | |
| C2 | 0.3463 (2) | 0.3008 (2) | 0.3116 (3) | 0.0277 (7) | |
| C3 | 0.3832 (3) | 0.2177 (2) | 0.3478 (3) | 0.0328 (8) | |
| H3 | 0.3808 | 0.1876 | 0.4055 | 0.039* | |
| C4 | 0.4236 (3) | 0.1775 (2) | 0.3015 (4) | 0.0388 (9) | |
| H4 | 0.4480 | 0.1203 | 0.3274 | 0.047* | |
| C5 | 0.4285 (3) | 0.2201 (2) | 0.2178 (3) | 0.0354 (8) | |
| H5 | 0.4569 | 0.1919 | 0.1873 | 0.043* | |
| C6 | 0.3926 (2) | 0.3033 (2) | 0.1777 (3) | 0.0296 (7) | |
| C7 | 0.4002 (3) | 0.3505 (2) | 0.0879 (3) | 0.0332 (8) | |
| H7 | 0.3583 | 0.4031 | 0.0567 | 0.040* | |
| C8 | 0.3653 (4) | 0.2949 (3) | −0.0245 (4) | 0.0578 (13) | |
| H8A | 0.3638 | 0.3297 | −0.0849 | 0.087* | |
| H8B | 0.3006 | 0.2734 | −0.0640 | 0.087* | |
| H8C | 0.4090 | 0.2459 | 0.0029 | 0.087* | |
| C9 | 0.5022 (3) | 0.3801 (4) | 0.1556 (4) | 0.0573 (13) | |
| H9A | 0.5240 | 0.4145 | 0.2289 | 0.086* | |
| H9B | 0.5050 | 0.4156 | 0.0992 | 0.086* | |
| H9C | 0.5440 | 0.3296 | 0.1825 | 0.086* | |
| C10 | 0.3020 (3) | 0.3437 (2) | 0.3629 (3) | 0.0310 (8) | |
| H10 | 0.2700 | 0.3981 | 0.3141 | 0.037* | |
| C11 | 0.3788 (4) | 0.3692 (5) | 0.4980 (4) | 0.080 (2) | |
| H11A | 0.4077 | 0.3170 | 0.5497 | 0.120* | |
| H11B | 0.3500 | 0.4040 | 0.5259 | 0.120* | |
| H11C | 0.4284 | 0.4031 | 0.5062 | 0.120* | |
| C12 | 0.2256 (5) | 0.2874 (4) | 0.3461 (6) | 0.0741 (17) | |
| H12A | 0.1784 | 0.2701 | 0.2582 | 0.111* | |
| H12B | 0.1932 | 0.3200 | 0.3706 | 0.111* | |
| H12C | 0.2557 | 0.2356 | 0.3986 | 0.111* | |
| C13 | 0.3643 (3) | 0.5000 | 0.2404 (4) | 0.0239 (9) | |
| H13 | 0.4304 | 0.5000 | 0.3122 | 0.029* | |
| C14 | 0.2147 (2) | 0.4503 (2) | 0.0778 (3) | 0.0298 (7) | |
| H14A | 0.1690 | 0.4272 | 0.0882 | 0.036* | |
| H14B | 0.1980 | 0.4272 | −0.0005 | 0.036* | |
| N1 | 0.31536 (19) | 0.42912 (17) | 0.1873 (2) | 0.0250 (6) | |
| I1 | 0.24578 (3) | 0.0000 | 0.27734 (5) | 0.06328 (17) | |
| I2 | 0.34949 (3) | 0.0000 | 0.54335 (4) | 0.05203 (15) | |
| I3 | 0.45122 (3) | 0.0000 | 0.81697 (5) | 0.06143 (17) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0219 (16) | 0.0203 (15) | 0.0278 (14) | −0.0005 (12) | 0.0134 (12) | −0.0018 (12) |
| C2 | 0.0229 (16) | 0.0261 (17) | 0.0252 (14) | −0.0019 (13) | 0.0111 (13) | −0.0014 (12) |
| C3 | 0.0311 (19) | 0.0298 (19) | 0.0313 (16) | −0.0006 (15) | 0.0170 (14) | 0.0027 (14) |
| C4 | 0.035 (2) | 0.0253 (19) | 0.045 (2) | 0.0043 (16) | 0.0201 (17) | 0.0037 (15) |
| C5 | 0.034 (2) | 0.0302 (19) | 0.0416 (18) | 0.0031 (16) | 0.0240 (16) | −0.0041 (15) |
| C6 | 0.0221 (17) | 0.0294 (18) | 0.0328 (15) | −0.0029 (14) | 0.0153 (14) | −0.0042 (14) |
| C7 | 0.0312 (19) | 0.0338 (19) | 0.0393 (17) | 0.0014 (15) | 0.0246 (16) | −0.0014 (15) |
| C8 | 0.068 (3) | 0.060 (3) | 0.038 (2) | −0.019 (3) | 0.030 (2) | −0.011 (2) |
| C9 | 0.048 (3) | 0.081 (4) | 0.051 (2) | −0.027 (3) | 0.035 (2) | −0.012 (2) |
| C10 | 0.0318 (18) | 0.0329 (19) | 0.0272 (15) | 0.0007 (15) | 0.0182 (14) | −0.0011 (14) |
| C11 | 0.050 (3) | 0.115 (5) | 0.043 (2) | 0.019 (3) | 0.015 (2) | −0.035 (3) |
| C12 | 0.103 (5) | 0.059 (3) | 0.118 (5) | −0.025 (3) | 0.097 (4) | −0.029 (3) |
| C13 | 0.021 (2) | 0.026 (2) | 0.0233 (19) | 0.000 | 0.0131 (17) | 0.000 |
| C14 | 0.0198 (16) | 0.0267 (18) | 0.0303 (15) | 0.0005 (13) | 0.0101 (13) | −0.0013 (13) |
| N1 | 0.0201 (13) | 0.0214 (14) | 0.0267 (12) | 0.0006 (11) | 0.0118 (11) | 0.0002 (10) |
| I1 | 0.0473 (3) | 0.0391 (3) | 0.0848 (3) | 0.000 | 0.0333 (2) | 0.000 |
| I2 | 0.0325 (2) | 0.0354 (2) | 0.0847 (3) | 0.000 | 0.0356 (2) | 0.000 |
| I3 | 0.0361 (2) | 0.0614 (3) | 0.0792 (3) | 0.000 | 0.0331 (2) | 0.000 |
Geometric parameters (Å, °)
| C1—C6 | 1.403 (5) | C9—H9C | 0.9800 |
| C1—C2 | 1.407 (5) | C10—C11 | 1.509 (5) |
| C1—N1 | 1.441 (4) | C10—C12 | 1.518 (6) |
| C2—C3 | 1.386 (5) | C10—H10 | 1.0000 |
| C2—C10 | 1.518 (5) | C11—H11A | 0.9800 |
| C3—C4 | 1.384 (5) | C11—H11B | 0.9800 |
| C3—H3 | 0.9500 | C11—H11C | 0.9800 |
| C4—C5 | 1.385 (5) | C12—H12A | 0.9800 |
| C4—H4 | 0.9500 | C12—H12B | 0.9800 |
| C5—C6 | 1.388 (5) | C12—H12C | 0.9800 |
| C5—H5 | 0.9500 | C13—N1 | 1.302 (3) |
| C6—C7 | 1.520 (5) | C13—N1i | 1.302 (3) |
| C7—C9 | 1.511 (5) | C13—H13 | 0.9500 |
| C7—C8 | 1.521 (5) | C14—N1 | 1.484 (4) |
| C7—H7 | 1.0000 | C14—C14i | 1.535 (7) |
| C8—H8A | 0.9800 | C14—H14A | 0.9900 |
| C8—H8B | 0.9800 | C14—H14B | 0.9900 |
| C8—H8C | 0.9800 | I1—I2 | 2.8824 (7) |
| C9—H9A | 0.9800 | I2—I3 | 2.9808 (7) |
| C9—H9B | 0.9800 | ||
| C6—C1—C2 | 123.1 (3) | H9A—C9—H9C | 109.5 |
| C6—C1—N1 | 118.5 (3) | H9B—C9—H9C | 109.5 |
| C2—C1—N1 | 118.4 (3) | C11—C10—C12 | 111.6 (4) |
| C3—C2—C1 | 116.8 (3) | C11—C10—C2 | 110.7 (3) |
| C3—C2—C10 | 120.7 (3) | C12—C10—C2 | 112.0 (3) |
| C1—C2—C10 | 122.5 (3) | C11—C10—H10 | 107.5 |
| C4—C3—C2 | 121.5 (3) | C12—C10—H10 | 107.5 |
| C4—C3—H3 | 119.3 | C2—C10—H10 | 107.5 |
| C2—C3—H3 | 119.3 | C10—C11—H11A | 109.5 |
| C5—C4—C3 | 120.4 (3) | C10—C11—H11B | 109.5 |
| C5—C4—H4 | 119.8 | H11A—C11—H11B | 109.5 |
| C3—C4—H4 | 119.8 | C10—C11—H11C | 109.5 |
| C4—C5—C6 | 120.9 (4) | H11A—C11—H11C | 109.5 |
| C4—C5—H5 | 119.5 | H11B—C11—H11C | 109.5 |
| C6—C5—H5 | 119.5 | C10—C12—H12A | 109.5 |
| C5—C6—C1 | 117.3 (3) | C10—C12—H12B | 109.5 |
| C5—C6—C7 | 120.7 (3) | H12A—C12—H12B | 109.5 |
| C1—C6—C7 | 121.9 (3) | C10—C12—H12C | 109.5 |
| C9—C7—C8 | 110.7 (3) | H12A—C12—H12C | 109.5 |
| C9—C7—C6 | 110.2 (3) | H12B—C12—H12C | 109.5 |
| C8—C7—C6 | 111.8 (3) | N1—C13—N1i | 114.6 (4) |
| C9—C7—H7 | 108.0 | N1—C13—H13 | 122.7 |
| C8—C7—H7 | 108.0 | N1i—C13—H13 | 122.7 |
| C6—C7—H7 | 108.0 | N1—C14—C14i | 102.77 (16) |
| C7—C8—H8A | 109.5 | N1—C14—H14A | 111.2 |
| C7—C8—H8B | 109.5 | C14i—C14—H14A | 111.2 |
| H8A—C8—H8B | 109.5 | N1—C14—H14B | 111.2 |
| C7—C8—H8C | 109.5 | C14i—C14—H14B | 111.2 |
| H8A—C8—H8C | 109.5 | H14A—C14—H14B | 109.1 |
| H8B—C8—H8C | 109.5 | C13—N1—C1 | 125.5 (3) |
| C7—C9—H9A | 109.5 | C13—N1—C14 | 109.9 (3) |
| C7—C9—H9B | 109.5 | C1—N1—C14 | 124.6 (3) |
| H9A—C9—H9B | 109.5 | I1—I2—I3 | 178.309 (18) |
| C7—C9—H9C | 109.5 | ||
| C6—C1—C2—C3 | 1.3 (5) | C1—C6—C7—C9 | 103.2 (4) |
| N1—C1—C2—C3 | −180.0 (3) | C5—C6—C7—C8 | 49.3 (5) |
| C6—C1—C2—C10 | −179.2 (3) | C1—C6—C7—C8 | −133.2 (4) |
| N1—C1—C2—C10 | −0.5 (4) | C3—C2—C10—C11 | 72.8 (5) |
| C1—C2—C3—C4 | −0.7 (5) | C1—C2—C10—C11 | −106.7 (4) |
| C10—C2—C3—C4 | 179.8 (3) | C3—C2—C10—C12 | −52.4 (5) |
| C2—C3—C4—C5 | 0.4 (6) | C1—C2—C10—C12 | 128.1 (4) |
| C3—C4—C5—C6 | −0.5 (6) | N1i—C13—N1—C1 | 179.3 (2) |
| C4—C5—C6—C1 | 1.0 (5) | N1i—C13—N1—C14 | 0.1 (5) |
| C4—C5—C6—C7 | 178.7 (3) | C6—C1—N1—C13 | −89.2 (4) |
| C2—C1—C6—C5 | −1.4 (5) | C2—C1—N1—C13 | 92.0 (4) |
| N1—C1—C6—C5 | 179.8 (3) | C6—C1—N1—C14 | 89.9 (4) |
| C2—C1—C6—C7 | −179.1 (3) | C2—C1—N1—C14 | −88.9 (4) |
| N1—C1—C6—C7 | 2.2 (5) | C14i—C14—N1—C13 | −0.1 (3) |
| C5—C6—C7—C9 | −74.3 (4) | C14i—C14—N1—C1 | −179.3 (3) |
Symmetry codes: (i) x, −y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2624).
References
- Bruker (2005). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
- Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090–o2091. [DOI] [PMC free article] [PubMed]
- Llewellyn, S., Green, M., Green, J. & Cowley, R. (2006). Dalton Trans. pp. 2535–2541. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045228/is2624sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045228/is2624Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

