Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 10;66(Pt 12):o3121. doi: 10.1107/S1600536810045228

1,3-Bis(2,6-diisopropyl­phen­yl)-4,5-dihydro-1H-imidazol-3-ium triiodide

Monisola I Ikhile a, Muhammad D Bala a,*
PMCID: PMC3011707  PMID: 21589425

Abstract

In the crystal structure of the title compound, C27H39N2 +·I3 , the imidazolidinium ring is perpendicular to a mirror plane which bis­ects the cation. The dihedral angle between the imidazolidinium ring and the benzene ring is 89.0 (2)°. The triiodide anion also lies on a mirror plane and is almost linear with an I—I—I bond angle of 178.309 (18)°.

Related literature

For a related structure with a 1,3-(2,6-diisopropyl­phen­yl)imidazolidinium unit, see: Giffin et al. (2010). For its synthesis, see: Llewellyn et al. (2006).graphic file with name e-66-o3121-scheme1.jpg

Experimental

Crystal data

  • C27H39N2 +·I3

  • M r = 772.30

  • Monoclinic, Inline graphic

  • a = 18.0288 (5) Å

  • b = 15.4554 (5) Å

  • c = 13.8457 (6) Å

  • β = 129.456 (1)°

  • V = 2978.81 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 173 K

  • 0.39 × 0.22 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005) T min = 0.438, T max = 0.642

  • 12244 measured reflections

  • 3772 independent reflections

  • 2536 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.122

  • S = 0.97

  • 3772 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.92 e Å−3

  • Δρmin = −1.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045228/is2624sup1.cif

e-66-o3121-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045228/is2624Isup2.hkl

e-66-o3121-Isup2.hkl (181.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr Manuel Fernandes for the data collection and the University KwaZulu-Natal and the NRF for financial support.

supplementary crystallographic information

Comment

We were using a general synthetic method that involved the deprotonation of N-heterocyclic carbene (NHC) salts with strong bases to generate free carbenes, followed by in situ metalation with an iron(II) precursor to generate iron(II) based NHC complexes. In order to obtain piano stool type compounds, η5-CpFe(CO)2I was used as the iron(II) precursor. Piano-stool type complexes are of interest due to their outstanding spectroscopic and structural features which has made them the subject of many elegant studies in the past. But in this instance, the title compound C27H39N2I3, (I), was obtained as a triiodide adduct of the protonated NHC ligand. A molecule of the cationic NHC is characterized by a bisecting mirror plane, while the triiodide counterion is symmetrical around the central iodine atom I2. The imidazolidinium ring is nearly orthogonal to the phenyl rings of the N-substituents with torsion angles N13–N1–C1–C6 close to 90°. The triiodide counterion is linear.

Experimental

To a suspension of 1,3-bis(2,6-diisopropylphenyl)imidazolidinium chloride (0.1 g) in dry THF (15 ml) was added potassium tert-butoxide (0.031 g). After 1 h, this solution was added to a solution of [η5-CpFe(CO)2I] (0.07 g) in dry toluene (40 ml). After stirring for 20 hrs, the resulting precipitate was centrifuged and washed once with dry toluene (30 ml). The toluene extracts were combined and left standing in air to form shiny black crystals of (I).

Refinement

Hydrogen atoms were first located in a difference map and then positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their respective parent atoms. The highest peak and the deepest hole in the difference Fourier map are located 0.87 and 0.65 Å, respectively, from atom I3.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom labelling scheme for non-hydrogen atoms. Ellipsoids are drawn at the 50% probability level. All H atoms have been omitted.

Crystal data

C27H39N2+·I3 F(000) = 1496
Mr = 772.30 Dx = 1.722 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 3850 reflections
a = 18.0288 (5) Å θ = 2.9–28.1°
b = 15.4554 (5) Å µ = 3.16 mm1
c = 13.8457 (6) Å T = 173 K
β = 129.456 (1)° Block, brown
V = 2978.81 (18) Å3 0.39 × 0.22 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3772 independent reflections
Radiation source: fine-focus sealed tube 2536 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: integration (XPREP; Bruker, 2005) h = −17→24
Tmin = 0.438, Tmax = 0.642 k = −20→18
12244 measured reflections l = −18→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.065P)2 + 5.5612P] where P = (Fo2 + 2Fc2)/3
3772 reflections (Δ/σ)max = 0.026
155 parameters Δρmax = 1.92 e Å3
0 restraints Δρmin = −1.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3529 (2) 0.3426 (2) 0.2270 (3) 0.0250 (7)
C2 0.3463 (2) 0.3008 (2) 0.3116 (3) 0.0277 (7)
C3 0.3832 (3) 0.2177 (2) 0.3478 (3) 0.0328 (8)
H3 0.3808 0.1876 0.4055 0.039*
C4 0.4236 (3) 0.1775 (2) 0.3015 (4) 0.0388 (9)
H4 0.4480 0.1203 0.3274 0.047*
C5 0.4285 (3) 0.2201 (2) 0.2178 (3) 0.0354 (8)
H5 0.4569 0.1919 0.1873 0.043*
C6 0.3926 (2) 0.3033 (2) 0.1777 (3) 0.0296 (7)
C7 0.4002 (3) 0.3505 (2) 0.0879 (3) 0.0332 (8)
H7 0.3583 0.4031 0.0567 0.040*
C8 0.3653 (4) 0.2949 (3) −0.0245 (4) 0.0578 (13)
H8A 0.3638 0.3297 −0.0849 0.087*
H8B 0.3006 0.2734 −0.0640 0.087*
H8C 0.4090 0.2459 0.0029 0.087*
C9 0.5022 (3) 0.3801 (4) 0.1556 (4) 0.0573 (13)
H9A 0.5240 0.4145 0.2289 0.086*
H9B 0.5050 0.4156 0.0992 0.086*
H9C 0.5440 0.3296 0.1825 0.086*
C10 0.3020 (3) 0.3437 (2) 0.3629 (3) 0.0310 (8)
H10 0.2700 0.3981 0.3141 0.037*
C11 0.3788 (4) 0.3692 (5) 0.4980 (4) 0.080 (2)
H11A 0.4077 0.3170 0.5497 0.120*
H11B 0.3500 0.4040 0.5259 0.120*
H11C 0.4284 0.4031 0.5062 0.120*
C12 0.2256 (5) 0.2874 (4) 0.3461 (6) 0.0741 (17)
H12A 0.1784 0.2701 0.2582 0.111*
H12B 0.1932 0.3200 0.3706 0.111*
H12C 0.2557 0.2356 0.3986 0.111*
C13 0.3643 (3) 0.5000 0.2404 (4) 0.0239 (9)
H13 0.4304 0.5000 0.3122 0.029*
C14 0.2147 (2) 0.4503 (2) 0.0778 (3) 0.0298 (7)
H14A 0.1690 0.4272 0.0882 0.036*
H14B 0.1980 0.4272 −0.0005 0.036*
N1 0.31536 (19) 0.42912 (17) 0.1873 (2) 0.0250 (6)
I1 0.24578 (3) 0.0000 0.27734 (5) 0.06328 (17)
I2 0.34949 (3) 0.0000 0.54335 (4) 0.05203 (15)
I3 0.45122 (3) 0.0000 0.81697 (5) 0.06143 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0219 (16) 0.0203 (15) 0.0278 (14) −0.0005 (12) 0.0134 (12) −0.0018 (12)
C2 0.0229 (16) 0.0261 (17) 0.0252 (14) −0.0019 (13) 0.0111 (13) −0.0014 (12)
C3 0.0311 (19) 0.0298 (19) 0.0313 (16) −0.0006 (15) 0.0170 (14) 0.0027 (14)
C4 0.035 (2) 0.0253 (19) 0.045 (2) 0.0043 (16) 0.0201 (17) 0.0037 (15)
C5 0.034 (2) 0.0302 (19) 0.0416 (18) 0.0031 (16) 0.0240 (16) −0.0041 (15)
C6 0.0221 (17) 0.0294 (18) 0.0328 (15) −0.0029 (14) 0.0153 (14) −0.0042 (14)
C7 0.0312 (19) 0.0338 (19) 0.0393 (17) 0.0014 (15) 0.0246 (16) −0.0014 (15)
C8 0.068 (3) 0.060 (3) 0.038 (2) −0.019 (3) 0.030 (2) −0.011 (2)
C9 0.048 (3) 0.081 (4) 0.051 (2) −0.027 (3) 0.035 (2) −0.012 (2)
C10 0.0318 (18) 0.0329 (19) 0.0272 (15) 0.0007 (15) 0.0182 (14) −0.0011 (14)
C11 0.050 (3) 0.115 (5) 0.043 (2) 0.019 (3) 0.015 (2) −0.035 (3)
C12 0.103 (5) 0.059 (3) 0.118 (5) −0.025 (3) 0.097 (4) −0.029 (3)
C13 0.021 (2) 0.026 (2) 0.0233 (19) 0.000 0.0131 (17) 0.000
C14 0.0198 (16) 0.0267 (18) 0.0303 (15) 0.0005 (13) 0.0101 (13) −0.0013 (13)
N1 0.0201 (13) 0.0214 (14) 0.0267 (12) 0.0006 (11) 0.0118 (11) 0.0002 (10)
I1 0.0473 (3) 0.0391 (3) 0.0848 (3) 0.000 0.0333 (2) 0.000
I2 0.0325 (2) 0.0354 (2) 0.0847 (3) 0.000 0.0356 (2) 0.000
I3 0.0361 (2) 0.0614 (3) 0.0792 (3) 0.000 0.0331 (2) 0.000

Geometric parameters (Å, °)

C1—C6 1.403 (5) C9—H9C 0.9800
C1—C2 1.407 (5) C10—C11 1.509 (5)
C1—N1 1.441 (4) C10—C12 1.518 (6)
C2—C3 1.386 (5) C10—H10 1.0000
C2—C10 1.518 (5) C11—H11A 0.9800
C3—C4 1.384 (5) C11—H11B 0.9800
C3—H3 0.9500 C11—H11C 0.9800
C4—C5 1.385 (5) C12—H12A 0.9800
C4—H4 0.9500 C12—H12B 0.9800
C5—C6 1.388 (5) C12—H12C 0.9800
C5—H5 0.9500 C13—N1 1.302 (3)
C6—C7 1.520 (5) C13—N1i 1.302 (3)
C7—C9 1.511 (5) C13—H13 0.9500
C7—C8 1.521 (5) C14—N1 1.484 (4)
C7—H7 1.0000 C14—C14i 1.535 (7)
C8—H8A 0.9800 C14—H14A 0.9900
C8—H8B 0.9800 C14—H14B 0.9900
C8—H8C 0.9800 I1—I2 2.8824 (7)
C9—H9A 0.9800 I2—I3 2.9808 (7)
C9—H9B 0.9800
C6—C1—C2 123.1 (3) H9A—C9—H9C 109.5
C6—C1—N1 118.5 (3) H9B—C9—H9C 109.5
C2—C1—N1 118.4 (3) C11—C10—C12 111.6 (4)
C3—C2—C1 116.8 (3) C11—C10—C2 110.7 (3)
C3—C2—C10 120.7 (3) C12—C10—C2 112.0 (3)
C1—C2—C10 122.5 (3) C11—C10—H10 107.5
C4—C3—C2 121.5 (3) C12—C10—H10 107.5
C4—C3—H3 119.3 C2—C10—H10 107.5
C2—C3—H3 119.3 C10—C11—H11A 109.5
C5—C4—C3 120.4 (3) C10—C11—H11B 109.5
C5—C4—H4 119.8 H11A—C11—H11B 109.5
C3—C4—H4 119.8 C10—C11—H11C 109.5
C4—C5—C6 120.9 (4) H11A—C11—H11C 109.5
C4—C5—H5 119.5 H11B—C11—H11C 109.5
C6—C5—H5 119.5 C10—C12—H12A 109.5
C5—C6—C1 117.3 (3) C10—C12—H12B 109.5
C5—C6—C7 120.7 (3) H12A—C12—H12B 109.5
C1—C6—C7 121.9 (3) C10—C12—H12C 109.5
C9—C7—C8 110.7 (3) H12A—C12—H12C 109.5
C9—C7—C6 110.2 (3) H12B—C12—H12C 109.5
C8—C7—C6 111.8 (3) N1—C13—N1i 114.6 (4)
C9—C7—H7 108.0 N1—C13—H13 122.7
C8—C7—H7 108.0 N1i—C13—H13 122.7
C6—C7—H7 108.0 N1—C14—C14i 102.77 (16)
C7—C8—H8A 109.5 N1—C14—H14A 111.2
C7—C8—H8B 109.5 C14i—C14—H14A 111.2
H8A—C8—H8B 109.5 N1—C14—H14B 111.2
C7—C8—H8C 109.5 C14i—C14—H14B 111.2
H8A—C8—H8C 109.5 H14A—C14—H14B 109.1
H8B—C8—H8C 109.5 C13—N1—C1 125.5 (3)
C7—C9—H9A 109.5 C13—N1—C14 109.9 (3)
C7—C9—H9B 109.5 C1—N1—C14 124.6 (3)
H9A—C9—H9B 109.5 I1—I2—I3 178.309 (18)
C7—C9—H9C 109.5
C6—C1—C2—C3 1.3 (5) C1—C6—C7—C9 103.2 (4)
N1—C1—C2—C3 −180.0 (3) C5—C6—C7—C8 49.3 (5)
C6—C1—C2—C10 −179.2 (3) C1—C6—C7—C8 −133.2 (4)
N1—C1—C2—C10 −0.5 (4) C3—C2—C10—C11 72.8 (5)
C1—C2—C3—C4 −0.7 (5) C1—C2—C10—C11 −106.7 (4)
C10—C2—C3—C4 179.8 (3) C3—C2—C10—C12 −52.4 (5)
C2—C3—C4—C5 0.4 (6) C1—C2—C10—C12 128.1 (4)
C3—C4—C5—C6 −0.5 (6) N1i—C13—N1—C1 179.3 (2)
C4—C5—C6—C1 1.0 (5) N1i—C13—N1—C14 0.1 (5)
C4—C5—C6—C7 178.7 (3) C6—C1—N1—C13 −89.2 (4)
C2—C1—C6—C5 −1.4 (5) C2—C1—N1—C13 92.0 (4)
N1—C1—C6—C5 179.8 (3) C6—C1—N1—C14 89.9 (4)
C2—C1—C6—C7 −179.1 (3) C2—C1—N1—C14 −88.9 (4)
N1—C1—C6—C7 2.2 (5) C14i—C14—N1—C13 −0.1 (3)
C5—C6—C7—C9 −74.3 (4) C14i—C14—N1—C1 −179.3 (3)

Symmetry codes: (i) x, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2624).

References

  1. Bruker (2005). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090–o2091. [DOI] [PMC free article] [PubMed]
  3. Llewellyn, S., Green, M., Green, J. & Cowley, R. (2006). Dalton Trans. pp. 2535–2541. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045228/is2624sup1.cif

e-66-o3121-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045228/is2624Isup2.hkl

e-66-o3121-Isup2.hkl (181.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES