Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 13;66(Pt 12):o3180. doi: 10.1107/S1600536810046349

2-(3-Morpholino­prop­yl)-2,3-dihydro-1H-pyrrolo­[3,4-b]quinolin-1-one monohydrate

Yu-Hua Long a,*, Ting Zhou a, Ding-Qiao Yang a, Wen-Ling Wang a, Han-Mei Zhang a
PMCID: PMC3011724  PMID: 21589475

Abstract

In the title compound, C18H21N3O2·H2O, the fused-ring system is approximately planar [maximum atomic deviation = 0.028 (3) Å]; the morpholine ring displays a chair conformation. The crystal packing is stabilized by classical inter­molecular O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O hydrogen bonds between the organic mol­ecules and the water mol­ecules.

Related literature

For the properties and biological activity of quinoline deriv­atives, see: Vaitilingam et al. (2004); Lee et al. (2004); Zwaagstra et al. (1998); Roma et al. (2000); Ferrarini et al. (2000). For the preparation of quinoline derivatives, see: Zhou et al. (2010); Yang et al. (2008).graphic file with name e-66-o3180-scheme1.jpg

Experimental

Crystal data

  • C18H21N3O2·H2O

  • M r = 329.39

  • Orthorhombic, Inline graphic

  • a = 7.0107 (16) Å

  • b = 12.655 (3) Å

  • c = 37.609 (9) Å

  • V = 3336.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • 15458 measured reflections

  • 2943 independent reflections

  • 1864 reflections with I > 2σ(I)

  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.144

  • S = 1.04

  • 2943 reflections

  • 225 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046349/xu5085sup1.cif

e-66-o3180-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046349/xu5085Isup2.hkl

e-66-o3180-Isup2.hkl (144.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N3i 0.86 (4) 2.15 (4) 2.961 (4) 155 (4)
O1W—H2W⋯O1ii 0.87 (4) 1.98 (4) 2.843 (3) 174 (4)
C11—H11B⋯O1W 0.97 2.47 3.326 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (grant No. 20802021) and the Natural Science Foundation of Guangdong Province, China (grant No. 8251063101000002).

supplementary crystallographic information

Comment

Quinoline analogues have been reported to display promising antibacterial (Vaitilingam et al., 2004), an-ticancer and antiplatelet (Lee et al., 2004), antiasthmatic (Zwaagstra et al., 1998), antiinflammatory (Roma et al., 2000), and antihypertensive activities (Ferrarini et al., 2000). We have synthesized some new quinoline derivatives (Yang et al., 2008). In continuation of our efforts to develop quinoline derivatives with a new structure-activity relationship, herein, we report the synthesis and structure determination the title compound.

The molecular geometry and the atom-labeling scheme of the title compound is illustrated in Fig. 1. The molecule contains three approximately coplanar rings and the dihedral angle between the three rings 1.60 (2)° and 1.20 (5)°, respectively; the C—N2—C—C torsion angles are 43.59° and -137.51°; the morpholine ring shows a stable chair conformation. The crystal structure can be depicted as layers along a-axis which ring systems are parallel to one another. The crystal packing is stabilized by intermolecular interactions between O and H atoms [C—H···O = 2.638Å].

Experimental

The precursor, ethyl 2-(bromomethyl)quinoline-3-carboxylate, was prepared according to the literature procedure (Yang et al., 2008; Zhou et al., 2010). The title compoud was synthesized by treating 1 mmol of ethyl 2-(bromomethyl)quinoline-3-carboxylate with 1.2 mmol of 3-morpholinopropan-1-amine in the presence of NaHCO3 in acetonitrile. The reaction was carried out under the stirring at room temperature for 10 h. Once the reaction was complete, the solid salt was filtered off and the filtrate was then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with the mixture of methanol and ethyl acetate (v /v = 1/20) to afford the white product. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of petroleum ether and dichloromethane, in which the small amount of water was not removed.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound.

Fig. 3.

Fig. 3.

Reaction scheme for the title compound.

Crystal data

C18H21N3O2·H2O F(000) = 1408.0
Mr = 329.39 Dx = 1.311 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1868 reflections
a = 7.0107 (16) Å θ = 3.1–20.4°
b = 12.655 (3) Å µ = 0.09 mm1
c = 37.609 (9) Å T = 296 K
V = 3336.7 (13) Å3 Block, colorless
Z = 8 0.30 × 0.28 × 0.27 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 1864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.067
graphite θmax = 25.0°, θmin = 2.2°
φ and ω scans h = −8→7
15458 measured reflections k = −15→14
2943 independent reflections l = −44→41

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 1.0475P] where P = (Fo2 + 2Fc2)/3
2943 reflections (Δ/σ)max < 0.001
225 parameters Δρmax = 0.28 e Å3
3 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1806 (3) 0.84470 (14) 0.25789 (5) 0.0447 (5)
O1 0.1534 (3) 1.07919 (12) 0.35666 (4) 0.0547 (5)
N2 0.1728 (3) 0.89892 (13) 0.35114 (5) 0.0406 (5)
N3 −0.1048 (3) 0.66704 (14) 0.44146 (5) 0.0431 (5)
O2 −0.2365 (3) 0.47670 (15) 0.47362 (5) 0.0807 (7)
C6 0.1586 (3) 1.02874 (17) 0.23807 (6) 0.0401 (6)
C5 0.1701 (3) 0.91850 (17) 0.23121 (6) 0.0402 (6)
C4 0.1701 (4) 0.8838 (2) 0.19565 (6) 0.0509 (7)
H4 0.1744 0.8119 0.1907 0.061*
C1 0.1522 (4) 1.09912 (19) 0.20898 (7) 0.0519 (7)
H1 0.1446 1.1714 0.2132 0.062*
C3 0.1638 (4) 0.9544 (2) 0.16832 (7) 0.0561 (7)
H3 0.1642 0.9301 0.1450 0.067*
C2 0.1569 (4) 1.0629 (2) 0.17496 (7) 0.0582 (7)
H2 0.1554 1.1104 0.1561 0.070*
C9 0.1791 (3) 0.88333 (16) 0.29006 (6) 0.0386 (6)
C8 0.1644 (3) 0.99006 (16) 0.29942 (5) 0.0371 (6)
C10 0.1624 (3) 0.99828 (17) 0.33838 (6) 0.0399 (6)
C7 0.1545 (3) 1.06426 (17) 0.27334 (6) 0.0416 (6)
H7 0.1454 1.1358 0.2787 0.050*
C11 0.1741 (4) 0.87224 (18) 0.38875 (6) 0.0445 (6)
H11A 0.1305 0.9325 0.4025 0.053*
H11B 0.3034 0.8560 0.3961 0.053*
C13 0.0266 (4) 0.75468 (17) 0.43519 (6) 0.0443 (6)
H13A 0.1507 0.7370 0.4450 0.053*
H13B −0.0197 0.8171 0.4474 0.053*
C12 0.0472 (4) 0.77880 (18) 0.39619 (6) 0.0454 (6)
H12A 0.0990 0.7172 0.3843 0.054*
H12B −0.0781 0.7924 0.3863 0.054*
C15 −0.1663 (5) 0.4788 (2) 0.43826 (7) 0.0720 (9)
H15A −0.2717 0.4900 0.4220 0.086*
H15B −0.1090 0.4111 0.4327 0.086*
C17 −0.1709 (5) 0.6639 (2) 0.47821 (7) 0.0656 (9)
H17A −0.2290 0.7310 0.4844 0.079*
H17B −0.0636 0.6521 0.4940 0.079*
C14 −0.0214 (4) 0.56444 (18) 0.43321 (7) 0.0547 (7)
H14A 0.0871 0.5517 0.4486 0.066*
H14B 0.0234 0.5641 0.4088 0.066*
C16 −0.3143 (5) 0.5764 (2) 0.48256 (9) 0.0875 (12)
H16A −0.3581 0.5748 0.5070 0.105*
H16B −0.4237 0.5905 0.4675 0.105*
C18 0.1877 (4) 0.81867 (18) 0.32341 (6) 0.0467 (6)
H18A 0.0826 0.7690 0.3246 0.056*
H18B 0.3072 0.7803 0.3251 0.056*
O1W 0.5672 (4) 0.72672 (19) 0.39612 (10) 0.1179 (11)
H1W 0.638 (6) 0.695 (3) 0.4116 (10) 0.17 (2)*
H2W 0.506 (6) 0.678 (3) 0.3845 (11) 0.20 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0601 (15) 0.0386 (10) 0.0354 (11) 0.0044 (10) −0.0005 (9) 0.0000 (8)
O1 0.0741 (14) 0.0385 (9) 0.0515 (10) −0.0030 (8) 0.0045 (9) −0.0100 (8)
N2 0.0512 (13) 0.0360 (10) 0.0346 (10) −0.0028 (9) 0.0013 (9) −0.0007 (8)
N3 0.0506 (13) 0.0402 (11) 0.0384 (11) −0.0036 (9) 0.0092 (9) −0.0022 (8)
O2 0.120 (2) 0.0528 (12) 0.0695 (13) −0.0217 (12) 0.0372 (13) −0.0008 (9)
C6 0.0372 (15) 0.0409 (13) 0.0424 (13) −0.0019 (11) −0.0023 (11) 0.0071 (10)
C5 0.0361 (14) 0.0451 (14) 0.0393 (13) 0.0026 (11) −0.0004 (11) 0.0037 (10)
C4 0.0583 (18) 0.0533 (15) 0.0410 (14) 0.0107 (13) −0.0017 (12) 0.0002 (12)
C1 0.0547 (18) 0.0467 (14) 0.0543 (16) −0.0010 (12) −0.0034 (13) 0.0114 (12)
C3 0.0527 (18) 0.0750 (19) 0.0406 (14) 0.0123 (14) −0.0010 (12) 0.0058 (13)
C2 0.0565 (19) 0.0665 (18) 0.0517 (17) 0.0026 (14) −0.0005 (14) 0.0192 (13)
C9 0.0429 (15) 0.0352 (12) 0.0378 (13) 0.0001 (10) 0.0004 (11) 0.0005 (10)
C8 0.0382 (14) 0.0332 (12) 0.0400 (13) −0.0036 (10) 0.0025 (11) −0.0001 (9)
C10 0.0389 (14) 0.0363 (13) 0.0444 (14) −0.0037 (10) 0.0019 (11) −0.0029 (10)
C7 0.0445 (16) 0.0338 (12) 0.0465 (14) −0.0035 (11) −0.0017 (12) −0.0003 (10)
C11 0.0495 (16) 0.0495 (14) 0.0346 (13) −0.0068 (12) −0.0018 (11) 0.0005 (10)
C13 0.0513 (16) 0.0429 (13) 0.0387 (13) −0.0055 (12) −0.0027 (11) 0.0000 (10)
C12 0.0519 (17) 0.0450 (14) 0.0393 (13) −0.0069 (12) −0.0013 (11) 0.0015 (10)
C15 0.096 (3) 0.0501 (16) 0.070 (2) −0.0123 (16) 0.0266 (18) −0.0086 (14)
C17 0.091 (2) 0.0552 (16) 0.0503 (16) −0.0108 (16) 0.0242 (15) −0.0076 (12)
C14 0.068 (2) 0.0441 (14) 0.0522 (15) 0.0011 (13) 0.0158 (14) 0.0000 (11)
C16 0.114 (3) 0.062 (2) 0.086 (2) −0.0226 (19) 0.054 (2) −0.0117 (16)
C18 0.0626 (18) 0.0372 (13) 0.0402 (13) −0.0027 (12) 0.0009 (12) −0.0006 (10)
O1W 0.091 (2) 0.0689 (15) 0.194 (3) 0.0150 (14) −0.066 (2) −0.0318 (18)

Geometric parameters (Å, °)

N1—C9 1.305 (3) C8—C10 1.469 (3)
N1—C5 1.373 (3) C7—H7 0.9300
O1—C10 1.235 (3) C11—C12 1.506 (3)
N2—C10 1.348 (3) C11—H11A 0.9700
N2—C11 1.454 (3) C11—H11B 0.9700
N2—C18 1.460 (3) C13—C12 1.505 (3)
N3—C14 1.458 (3) C13—H13A 0.9700
N3—C17 1.458 (3) C13—H13B 0.9700
N3—C13 1.461 (3) C12—H12A 0.9700
O2—C15 1.418 (3) C12—H12B 0.9700
O2—C16 1.415 (4) C15—C14 1.498 (4)
C6—C7 1.401 (3) C15—H15A 0.9700
C6—C1 1.411 (3) C15—H15B 0.9700
C6—C5 1.421 (3) C17—C16 1.505 (4)
C5—C4 1.408 (3) C17—H17A 0.9700
C4—C3 1.362 (3) C17—H17B 0.9700
C4—H4 0.9300 C14—H14A 0.9700
C1—C2 1.360 (3) C14—H14B 0.9700
C1—H1 0.9300 C16—H16A 0.9700
C3—C2 1.397 (4) C16—H16B 0.9700
C3—H3 0.9300 C18—H18A 0.9700
C2—H2 0.9300 C18—H18B 0.9700
C9—C8 1.400 (3) O1W—H1W 0.86 (4)
C9—C18 1.499 (3) O1W—H2W 0.87 (4)
C8—C7 1.360 (3)
C9—N1—C5 114.99 (18) N3—C13—C12 111.82 (18)
C10—N2—C11 124.29 (19) N3—C13—H13A 109.3
C10—N2—C18 113.48 (18) C12—C13—H13A 109.3
C11—N2—C18 122.21 (17) N3—C13—H13B 109.3
C14—N3—C17 107.80 (19) C12—C13—H13B 109.3
C14—N3—C13 112.86 (19) H13A—C13—H13B 107.9
C17—N3—C13 111.95 (18) C11—C12—C13 113.39 (19)
C15—O2—C16 109.9 (2) C11—C12—H12A 108.9
C7—C6—C1 122.1 (2) C13—C12—H12A 108.9
C7—C6—C5 119.21 (19) C11—C12—H12B 108.9
C1—C6—C5 118.7 (2) C13—C12—H12B 108.9
N1—C5—C4 118.8 (2) H12A—C12—H12B 107.7
N1—C5—C6 122.6 (2) O2—C15—C14 111.6 (2)
C4—C5—C6 118.6 (2) O2—C15—H15A 109.3
C3—C4—C5 120.8 (2) C14—C15—H15A 109.3
C3—C4—H4 119.6 O2—C15—H15B 109.3
C5—C4—H4 119.6 C14—C15—H15B 109.3
C2—C1—C6 121.1 (2) H15A—C15—H15B 108.0
C2—C1—H1 119.5 N3—C17—C16 109.6 (2)
C6—C1—H1 119.5 N3—C17—H17A 109.8
C4—C3—C2 120.7 (2) C16—C17—H17A 109.8
C4—C3—H3 119.6 N3—C17—H17B 109.8
C2—C3—H3 119.6 C16—C17—H17B 109.8
C1—C2—C3 120.0 (2) H17A—C17—H17B 108.2
C1—C2—H2 120.0 N3—C14—C15 110.2 (2)
C3—C2—H2 120.0 N3—C14—H14A 109.6
N1—C9—C8 126.5 (2) C15—C14—H14A 109.6
N1—C9—C18 124.83 (19) N3—C14—H14B 109.6
C8—C9—C18 108.63 (18) C15—C14—H14B 109.6
C7—C8—C9 119.3 (2) H14A—C14—H14B 108.1
C7—C8—C10 132.08 (19) O2—C16—C17 111.9 (3)
C9—C8—C10 108.65 (18) O2—C16—H16A 109.2
O1—C10—N2 125.3 (2) C17—C16—H16A 109.2
O1—C10—C8 127.9 (2) O2—C16—H16B 109.2
N2—C10—C8 106.78 (18) C17—C16—H16B 109.2
C8—C7—C6 117.4 (2) H16A—C16—H16B 107.9
C8—C7—H7 121.3 N2—C18—C9 102.43 (17)
C6—C7—H7 121.3 N2—C18—H18A 111.3
N2—C11—C12 111.07 (18) C9—C18—H18A 111.3
N2—C11—H11A 109.4 N2—C18—H18B 111.3
C12—C11—H11A 109.4 C9—C18—H18B 111.3
N2—C11—H11B 109.4 H18A—C18—H18B 109.2
C12—C11—H11B 109.4 H1W—O1W—H2W 107 (4)
H11A—C11—H11B 108.0
C9—N1—C5—C4 −179.8 (2) C7—C8—C10—N2 179.0 (3)
C9—N1—C5—C6 0.1 (3) C9—C8—C10—N2 −0.9 (3)
C7—C6—C5—N1 −1.1 (4) C9—C8—C7—C6 0.4 (3)
C1—C6—C5—N1 178.7 (2) C10—C8—C7—C6 −179.5 (2)
C7—C6—C5—C4 178.7 (2) C1—C6—C7—C8 −179.0 (2)
C1—C6—C5—C4 −1.4 (3) C5—C6—C7—C8 0.8 (3)
N1—C5—C4—C3 −178.7 (2) C10—N2—C11—C12 137.0 (2)
C6—C5—C4—C3 1.5 (4) C18—N2—C11—C12 −44.5 (3)
C7—C6—C1—C2 179.8 (2) C14—N3—C13—C12 75.8 (3)
C5—C6—C1—C2 0.0 (4) C17—N3—C13—C12 −162.4 (2)
C5—C4—C3—C2 −0.1 (4) N2—C11—C12—C13 −173.9 (2)
C6—C1—C2—C3 1.5 (4) N3—C13—C12—C11 177.1 (2)
C4—C3—C2—C1 −1.4 (4) C16—O2—C15—C14 56.8 (4)
C5—N1—C9—C8 1.3 (4) C14—N3—C17—C16 −58.6 (3)
C5—N1—C9—C18 179.5 (2) C13—N3—C17—C16 176.7 (2)
N1—C9—C8—C7 −1.6 (4) C17—N3—C14—C15 59.0 (3)
C18—C9—C8—C7 180.0 (2) C13—N3—C14—C15 −176.9 (2)
N1—C9—C8—C10 178.3 (2) O2—C15—C14—N3 −59.0 (3)
C18—C9—C8—C10 −0.2 (3) C15—O2—C16—C17 −57.1 (4)
C11—N2—C10—O1 0.3 (4) N3—C17—C16—O2 59.1 (4)
C18—N2—C10—O1 −178.3 (2) C10—N2—C18—C9 −1.7 (3)
C11—N2—C10—C8 −179.8 (2) C11—N2—C18—C9 179.7 (2)
C18—N2—C10—C8 1.6 (3) N1—C9—C18—N2 −177.5 (2)
C7—C8—C10—O1 −1.1 (5) C8—C9—C18—N2 1.0 (3)
C9—C8—C10—O1 179.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···N3i 0.86 (4) 2.15 (4) 2.961 (4) 155 (4)
O1W—H2W···O1ii 0.87 (4) 1.98 (4) 2.843 (3) 174 (4)
C11—H11B···O1W 0.97 2.47 3.326 (4) 147

Symmetry codes: (i) x+1, y, z; (ii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5085).

References

  1. Ferrarini, P. L., Mori, C., Badawneh, M., Calderonem, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem.35, 815–826. [DOI] [PubMed]
  2. Lee, B. D., Li, Z., French, K. J., Zhuang, Y., Xia, Z. & Smith, C. D. (2004). J. Med. Chem.47, 1413–1422. [DOI] [PubMed]
  3. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem.35, 1021–1035. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
  6. Vaitilingam, B., Nayyar, A., Palde, P. B., Monga, V., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem.12, 4179–4188. [DOI] [PubMed]
  7. Yang, D.-Q., Guo, W., Cai, Y.-P., Jiang, L.-S., Jiang, K.-L. & Wu, X.-B. (2008). Heteroat. Chem.19, 229–233.
  8. Zhou, T., Long, Y., Yang, D., Zhang, H. & Wang, W. (2010). Acta Cryst. E66, o2155. [DOI] [PMC free article] [PubMed]
  9. Zwaagstra, M. E., Timmerman, H., Van De Stolpe, A. C., De Kanter, F. J., Tamura, M., Wada, Y. & Zhang, M.-Q. (1998). J. Med. Chem.41, 1428–1438. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046349/xu5085sup1.cif

e-66-o3180-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046349/xu5085Isup2.hkl

e-66-o3180-Isup2.hkl (144.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES