Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 24;66(Pt 12):o3267. doi: 10.1107/S1600536810047914

10H-Phenothia­zine 5-oxide

Rui-Fang Jin a, Kai Yu a, Shi-Yao Yang a,*, Rong-Bin Huang a
PMCID: PMC3011726  PMID: 21589550

Abstract

In the title compound, C12H9NOS, the sulfoxide O atom is disordered over two sites with occupancies of 0.907 (4) and 0.093 (4). The dihedral angle betweeen the two aromatic rings is 18.40 (14)°. Different types of supramolecular interactions including inter­molecular N—H⋯O hydrogen bonds and π–π contacts [centroid–centroid distances = 3.9096 (16) and 4.1423 (16) Å] between the aromatic rings of symmetry-related mol­ecules are observed in the crystal structure.

Related literature

For N-aryl­phenothia­zine structures, see: Chu & Van der Helm (1974, 1975, 1976) and for N-aryl­phenothia­zine oxide structures, see: Chu et al. (1985), Wang et al. (2009). For a dioxophenothia­zinium cation co-crystallized with terephthalate trihydrate, see: Zhu et al. (2007).graphic file with name e-66-o3267-scheme1.jpg

Experimental

Crystal data

  • C12H9NOS

  • M r = 215.26

  • Monoclinic, Inline graphic

  • a = 6.4482 (4) Å

  • b = 7.6610 (5) Å

  • c = 22.0956 (14) Å

  • β = 110.466 (2)°

  • V = 1022.62 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.871, T max = 0.895

  • 7632 measured reflections

  • 2361 independent reflections

  • 1962 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.175

  • S = 1.04

  • 2361 reflections

  • 146 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047914/si2310sup1.cif

e-66-o3267-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047914/si2310Isup2.hkl

e-66-o3267-Isup2.hkl (116KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯O5i 0.86 2.10 2.856 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful for financial support by the National Natural Science Foundation of China (Nos. 20471049, 21071117) and NFFTBS (No. J1030415).

supplementary crystallographic information

Comment

The crystal structures of N-arylphenothiazine (Chu & Van der Helm, 1974, 1975, 1976), N-arylphenothiazine oxides (Chu et al., 1985; Wang et al., 2009) and dioxide (Zhu et al., 2007) have been reported, yet that of phenothiazine or its oxide has not been reported. The title compound (I) was obtained by the oxidation of phenothiazine in THF solution in air.

In the structure of I (Fig. 1), the sulfoxide O atom is disordered over two sites and the occupancy factors are 0.907 (4) (boat-axial S—O) and 0.093 (4) (boat-equatorial S—O). The same disorder in 10-acetyl-10H-phenothiazine 5-oxide was reported recently (Wang et al., 2009). The weighted average S—O distance of 1.471 Å in I is comparable to 1.466 Å in 10-acetyl-10H-phenothiazine 5-oxide, 1.498 (2) Å in 10-methylphenothiazine 5-oxide, and longer than 1.446 Å for dioxophenothiazinium cation (Zhu et al. 2007). The significantly shorter N—C distances in I than those in other N-arylphenothiazines or oxides are due to N—H instead of N-aryl groups (see the following table). For the same reason the dihedral angle betweeen the two benzene rings 18.40 (14) ° in I is smaller than those in the other compounds.

N—C (Å) substituent (reference)

1.365 (3), 1.368 (3) H (this work)

1.402 (2), 1.455 (5) methyl (Chu & Van der Helm, 1974)

1.406 (4), 1.427 (4) ethyl (Chu & Van der Helm, 1975)

1.410 (2), 1.414 (2) isopropyl (Chu & Van der Helm, 1976)

1.428 (2), 1.436 (2) acetyl (Wang et al., 2009)

1.409 (3), 1.409 (3) 2-dimethylammonium-propyl (Zhu et al. 2007)

In the crystal structure (Fig. 2), intermolecular interactions N—H···O hydrogen bond and π–π contacts between the aromatic rings [centroid to centroid distances = 3.9096 (16) and 4.1423 (16) Å] of symmetry-related molecules are observed.

Experimental

A mixture of 1,3,5-benzenetricarboxylic acid (0.5 mmol) and phenothiazine (0.5 mmol) was dissolved in 10 ml THF. The solution changed from colorless to red in air in several hours. Brown crystals were obtained by slow evaporation for about 4 days at room temperature.

Refinement

The aromatic H atoms were generated geometrically (C—H 0.93, N—H 0.86 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The position of the oxygen atom is refined at two sites, with occupancy factors of 0.907 (4) and 0.093 (4).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of I. Displacement ellipsoids are drawn at the 50% probabability level.

Fig. 2.

Fig. 2.

A perspective view of the crystal structure of I. Hydrogen atoms have been omitted for clarity.

Crystal data

C12H9NOS F(000) = 448
Mr = 215.26 Dx = 1.398 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3079 reflections
a = 6.4482 (4) Å θ = 2.7–27.3°
b = 7.6610 (5) Å µ = 0.28 mm1
c = 22.0956 (14) Å T = 297 K
β = 110.466 (2)° Block, brown
V = 1022.62 (11) Å3 0.50 × 0.50 × 0.40 mm
Z = 4

Data collection

Bruker APEX area-detector diffractometer 2361 independent reflections
Radiation source: fine-focus sealed tube 1962 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scan θmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −8→8
Tmin = 0.871, Tmax = 0.895 k = −9→9
7632 measured reflections l = −28→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.098P)2 + 0.4384P] where P = (Fo2 + 2Fc2)/3
2361 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.44 e Å3
6 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S5 0.42382 (10) 0.16598 (9) 0.58407 (3) 0.0511 (3)
O5 0.5476 (3) 0.3348 (3) 0.60011 (10) 0.0515 (6) 0.907 (4)
O5' 0.537 (2) 0.0431 (17) 0.5773 (6) 0.024 (4) 0.093 (4)
N10 −0.0212 (3) 0.2763 (3) 0.59516 (10) 0.0465 (5)
H10A −0.1256 0.3363 0.6009 0.056*
C1 −0.1959 (5) 0.3230 (3) 0.48155 (14) 0.0563 (7)
H1A −0.3197 0.3677 0.4885 0.068*
C2 −0.1951 (6) 0.3105 (4) 0.42027 (16) 0.0695 (9)
H2A −0.3182 0.3472 0.3859 0.083*
C3 −0.0141 (7) 0.2438 (4) 0.40843 (15) 0.0746 (10)
H3A −0.0169 0.2332 0.3662 0.090*
C4A 0.1721 (4) 0.2076 (3) 0.52193 (12) 0.0459 (6)
C4 0.1689 (6) 0.1936 (4) 0.45877 (15) 0.0624 (8)
H4A 0.2917 0.1500 0.4509 0.075*
C5A 0.3231 (4) 0.1236 (3) 0.64649 (12) 0.0458 (6)
C6 0.4605 (5) 0.0291 (4) 0.69942 (15) 0.0621 (8)
H6A 0.5904 −0.0202 0.6979 0.075*
C7 0.4058 (6) 0.0086 (4) 0.75312 (16) 0.0750 (9)
H7A 0.4974 −0.0554 0.7880 0.090*
C8 0.2155 (7) 0.0822 (4) 0.75575 (15) 0.0725 (9)
H8A 0.1807 0.0699 0.7930 0.087*
C9A 0.1255 (4) 0.1936 (3) 0.64756 (12) 0.0433 (5)
C9 0.0752 (5) 0.1739 (4) 0.70411 (15) 0.0592 (7)
H9A −0.0533 0.2232 0.7067 0.071*
C10A −0.0122 (4) 0.2694 (3) 0.53439 (12) 0.0429 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S5 0.0328 (4) 0.0552 (4) 0.0649 (5) 0.0046 (2) 0.0165 (3) −0.0057 (3)
O5 0.0265 (9) 0.0631 (13) 0.0647 (13) −0.0072 (8) 0.0156 (9) −0.0056 (9)
O5' 0.024 (4) 0.025 (4) 0.025 (4) 0.0011 (10) 0.0089 (16) −0.0008 (10)
N10 0.0303 (9) 0.0531 (12) 0.0573 (13) 0.0056 (9) 0.0166 (9) 0.0031 (10)
C1 0.0421 (14) 0.0503 (14) 0.0633 (17) −0.0057 (11) 0.0018 (12) 0.0081 (12)
C2 0.067 (2) 0.0634 (18) 0.0589 (18) −0.0144 (15) −0.0016 (15) 0.0080 (14)
C3 0.096 (3) 0.073 (2) 0.0481 (17) −0.026 (2) 0.0172 (17) −0.0066 (15)
C4A 0.0401 (13) 0.0447 (12) 0.0511 (14) −0.0055 (10) 0.0139 (11) −0.0057 (10)
C4 0.0675 (19) 0.0626 (17) 0.0614 (17) −0.0154 (14) 0.0279 (15) −0.0152 (14)
C5A 0.0364 (12) 0.0416 (12) 0.0532 (14) −0.0010 (10) 0.0077 (10) −0.0025 (10)
C6 0.0524 (16) 0.0517 (15) 0.0674 (18) 0.0074 (12) 0.0024 (13) 0.0060 (13)
C7 0.080 (2) 0.0612 (19) 0.063 (2) −0.0008 (17) −0.0001 (17) 0.0118 (15)
C8 0.095 (3) 0.0701 (19) 0.0504 (17) −0.0125 (18) 0.0227 (17) 0.0062 (14)
C9A 0.0352 (12) 0.0415 (12) 0.0502 (14) −0.0050 (9) 0.0113 (10) −0.0005 (10)
C9 0.0559 (17) 0.0644 (17) 0.0630 (17) −0.0101 (13) 0.0278 (14) −0.0038 (13)
C10A 0.0333 (11) 0.0391 (11) 0.0526 (14) −0.0056 (9) 0.0101 (10) 0.0009 (10)

Geometric parameters (Å, °)

S5—O5' 1.233 (13) C4A—C10A 1.393 (3)
S5—O5 1.496 (2) C4A—C4 1.393 (4)
S5—C5A 1.748 (3) C4—H4A 0.9300
S5—C4A 1.750 (3) C5A—C9A 1.390 (3)
N10—C10A 1.365 (3) C5A—C6 1.397 (4)
N10—C9A 1.368 (3) C6—C7 1.360 (5)
N10—H10A 0.8600 C6—H6A 0.9300
C1—C2 1.359 (5) C7—C8 1.370 (5)
C1—C10A 1.403 (3) C7—H7A 0.9300
C1—H1A 0.9300 C8—C9 1.376 (5)
C2—C3 1.380 (5) C8—H8A 0.9300
C2—H2A 0.9300 C9A—C9 1.404 (4)
C3—C4 1.364 (5) C9—H9A 0.9300
C3—H3A 0.9300
O5'—S5—O5 113.5 (6) C4A—C4—H4A 120.0
O5'—S5—C5A 110.7 (6) C9A—C5A—C6 120.1 (3)
O5—S5—C5A 106.75 (12) C9A—C5A—S5 122.5 (2)
O5'—S5—C4A 118.1 (6) C6—C5A—S5 117.0 (2)
O5—S5—C4A 107.46 (12) C7—C6—C5A 120.5 (3)
C5A—S5—C4A 98.86 (12) C7—C6—H6A 119.7
C10A—N10—C9A 124.1 (2) C5A—C6—H6A 119.7
C10A—N10—H10A 118.0 C6—C7—C8 119.9 (3)
C9A—N10—H10A 118.0 C6—C7—H7A 120.0
C2—C1—C10A 120.8 (3) C8—C7—H7A 120.0
C2—C1—H1A 119.6 C7—C8—C9 120.9 (3)
C10A—C1—H1A 119.6 C7—C8—H8A 119.5
C1—C2—C3 120.8 (3) C9—C8—H8A 119.5
C1—C2—H2A 119.6 N10—C9A—C5A 122.1 (2)
C3—C2—H2A 119.6 N10—C9A—C9 119.8 (2)
C4—C3—C2 119.9 (3) C5A—C9A—C9 118.2 (2)
C4—C3—H3A 120.1 C8—C9—C9A 120.2 (3)
C2—C3—H3A 120.1 C8—C9—H9A 119.9
C10A—C4A—C4 120.6 (3) C9A—C9—H9A 119.9
C10A—C4A—S5 121.9 (2) N10—C10A—C4A 122.7 (2)
C4—C4A—S5 117.2 (2) N10—C10A—C1 119.6 (2)
C3—C4—C4A 120.1 (3) C4A—C10A—C1 117.7 (3)
C3—C4—H4A 120.0
C10A—C1—C2—C3 0.3 (4) C5A—C6—C7—C8 −0.6 (5)
C1—C2—C3—C4 −1.6 (5) C6—C7—C8—C9 1.5 (5)
O5'—S5—C4A—C10A 145.5 (7) C10A—N10—C9A—C5A 13.3 (4)
O5—S5—C4A—C10A −84.5 (2) C10A—N10—C9A—C9 −165.2 (2)
C5A—S5—C4A—C10A 26.3 (2) C6—C5A—C9A—N10 −175.3 (2)
O5'—S5—C4A—C4 −40.9 (7) S5—C5A—C9A—N10 11.0 (3)
O5—S5—C4A—C4 89.1 (2) C6—C5A—C9A—C9 3.2 (4)
C5A—S5—C4A—C4 −160.1 (2) S5—C5A—C9A—C9 −170.48 (19)
C2—C3—C4—C4A 0.8 (5) C7—C8—C9—C9A 0.0 (5)
C10A—C4A—C4—C3 1.3 (4) N10—C9A—C9—C8 176.2 (3)
S5—C4A—C4—C3 −172.4 (2) C5A—C9A—C9—C8 −2.3 (4)
O5'—S5—C5A—C9A −151.4 (7) C9A—N10—C10A—C4A −13.6 (4)
O5—S5—C5A—C9A 84.6 (2) C9A—N10—C10A—C1 165.2 (2)
C4A—S5—C5A—C9A −26.7 (2) C4—C4A—C10A—N10 176.3 (2)
O5'—S5—C5A—C6 34.7 (7) S5—C4A—C10A—N10 −10.4 (3)
O5—S5—C5A—C6 −89.3 (2) C4—C4A—C10A—C1 −2.5 (4)
C4A—S5—C5A—C6 159.4 (2) S5—C4A—C10A—C1 170.87 (18)
C9A—C5A—C6—C7 −1.8 (4) C2—C1—C10A—N10 −177.1 (2)
S5—C5A—C6—C7 172.2 (2) C2—C1—C10A—C4A 1.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N10—H10A···O5i 0.86 2.10 2.856 (3) 146

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2310).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chu, S. S. C., de Meester, P., Jovanovic, M. V. & Biehl, E. R. (1985). Acta Cryst. C41, 1111–1114.
  4. Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489–2490.
  5. Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.
  6. Chu, S. S. C. & Van der Helm, D. (1976). Acta Cryst. B32, 1012–1016.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978. [DOI] [PMC free article] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  10. Zhu, D.-X., Sun, W., Yang, G.-F. & Ng, S. W. (2007). Acta Cryst. E63, o4830.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047914/si2310sup1.cif

e-66-o3267-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047914/si2310Isup2.hkl

e-66-o3267-Isup2.hkl (116KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES