Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 17;66(Pt 12):o3193. doi: 10.1107/S1600536810046027

[(Pyrrolidin-1-yl)carbothio­ylsulfan­yl]methyl pyrrolidine-1-carbodithio­ate

Wei-Lung Chou a, Kuang-Hway Yih b,*, Gene-Hsiang Lee c,*, Yen-Hsiang Huang a, Hsiao-Fen Wang b
PMCID: PMC3011744  PMID: 21589487

Abstract

The title compound, C11H18N2S4, was unexpectedly obtained during studies on the reactivity of the complex tris­(acac-κ2 O,O′)gallium(III) (acac is acetyl­acetonate) with C4H8NCS2H in dichloro­methane. The title compound shows disordered two pyrrolidine rings with major and minor occupancies of 0.546 (4) and 0.454 (4). Two (pyrrolidin-1-yl)carbothio­ylsulfanyl units are linked together through a methyl­ene C atom and weak C—H⋯S inter­actions are found.

Related literature

For bis­(dialkyl­dithio­carbamates), CH2(S2CNR 2)2, see: R = Me (Thomas, 1945, 1946); R = Et (Heckley et al., 1970); R = C5H10 (Sharma et al., 1991). For weak C—H⋯S inter­actions, see: Kayed et al. (2008); Pervez et al. (2010); Vangala et al. (2002); Yaqub et al. (2010). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007). For C=S double-bond lengths, see: Pauling (1960).graphic file with name e-66-o3193-scheme1.jpg

Experimental

Crystal data

  • C11H18N2S4

  • M r = 306.51

  • Orthorhombic, Inline graphic

  • a = 21.9118 (18) Å

  • b = 4.5705 (4) Å

  • c = 14.3452 (12) Å

  • V = 1436.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.856, T max = 0.910

  • 17016 measured reflections

  • 3292 independent reflections

  • 2759 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.166

  • S = 1.07

  • 3292 reflections

  • 180 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 1579 Friedel pairs

  • Flack parameter: −0.1 (2)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046027/bv2162sup1.cif

e-66-o3193-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046027/bv2162Isup2.hkl

e-66-o3193-Isup2.hkl (161.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯S3i 0.99 2.89 3.811 (9) 155
C10—H10B⋯S4ii 0.99 2.99 3.699 (11) 130
C9—H9A⋯S1ii 0.99 2.87 3.740 (8) 147
C9′—H9′A⋯S1ii 0.99 3.50 4.209 (11) 131
C5′—H5′B⋯S2i 0.99 2.94 3.704 (14) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).

supplementary crystallographic information

Comment

Formation of methylene bis(dialkyldithiocarbamates), CH2(S2CNR2)2 [R = Me (Thomas, 1946), Et (Heckley et al., 1970), C5H10 (Sharma et al., 1991)] have been reported in the literature as by-products in the reactions of transition metal halides with anhydrous sodium dialkyldithiocarbamates when methylene chloride was used as solvent or reaction of anhydrous sodium dialkyldithiocarbamates with methylene chloride under refluxing conditions (Sharma et al., 1991).

Our previous report showed complexes [In(S2CNC5H10)3], [In(pyS)3] and [In(pyS)2(acac)] (acac: acetylacetonate; pyS: pyridine-2-thionate) are prepared by reacting the complex tris(acac-κ2O,O')indium(III) with HS2CNC5H10, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively (Chou et al., 2007). To test the generality of this substitution reaction, we studied the reaction of tris(acac-κ2O,O')gallium(III) complex and C4H8NCS2H. During studies on the reactivity of complex tris(acac-κ2O,O')gallium(III), with C4H8NCS2H in dichloromethane, we unexpectedly obtained the white crystals of title compound (I), identified as methylene bis(pyrrolidinyldithiocarbamate) by X-ray structure, NMR and Mass spectroscopic analyses. It consists of two pyrrolidinyldithiocarbamate units, bridged by a methylene group, i.e. C4H8N—CS—S—CH2—S—CS—NC4H8. The 1H NMR spectrum of (I) in CDCl3 shows one singlet at 5.33 ppm., assignable to SCH2S. The IR spectrum shows the following characteristic bands, 1470 cm-1 (νC=N), 1305 cm-1 (νC-N), 990 cm-1 (νC=S), 915 cm-1 (νC-S). The FAB mass spectrum shows the molecular ions C11H18N2S4 with the characteristic isotopic distribution patterns.

The solid-state structure has been established by X-ray crystallography. The molecular structure of the title compound is shown in Fig. 1. In (I), the C1—S2 and C6—S4 bond lengths of 1.725 (10) and 1.693 (8) Å, respectively, are slightly longer than a normal C=S double bond (ca 1.61 Å) (Pauling, 1960), while the C1—S1 and C6—S3 distance of 1.743 (10) and 1.827 (8) Å, respectively, are clearly single bonds. The angle of S3—C11—S1 (114.05 (18)°) is larger than the ideal tetrahedral value of 109.47°, probably due to repulsion between the two C=S bonding electron pairs. Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and refined ratios of the major and minor components being 0.546 (4): 0.454 (4). As a result of two different packings are shown in Fig. 2(a) and (b). The weak interactions of C—H···S (3.683 (6) - 3.823 (11) Å) in (I) are also found in those of (E)-2-[1-(1-benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide (3.613 (3) - 3.762 (4) Å) (Kayed et al., 2008), 4-(5-chloro-2- methylphenyl)-1-[2-oxo-5-(trifluoromethoxy)indolin-3-ylidene]thiosemicarbazide (3.245 (4) Å) (Pervez et al., 2010), bis(4-aminophenyl)disulfide (3.7387 (18) Å) (Vangala et al., 2002) and 1-[1-(4-bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide (3.774 (3) Å) (Yaqub et al., 2010), respectively.

Experimental

The synthesis of the title compound (I) was carried out as follows. 10 ml of CH2Cl2 was added to a flask of Ga(acac)3 (0.367 g, 1.0 mmol) and C4H8NCS2H (0.345 g, 3.0 mmol). The solution was stirred for 2 days at room temperature. The solution is concentrated under vacuum and n-hexane (10 ml) was added to initiate precipitation. The pale-white solids were isolated by filtration (G4), washed with n-hexane (2 x 10 ml) and subsequently drying under vacuum yielding [CH2(S2CNC4H8)2] (0.459 g, 50%). Further purification was accomplished by recrystallization from 1/10 CH2Cl2/n-hexane. The pale-white crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH2Cl2 solution of the title compound at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): δ 1.65, 1.74 (m, 4H, NCCH2), δ 2.98, 3.29 (m, 4H, NCH2), 5.33 (s, 2H, SCH2). 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 24.8 (s, NCH2CH2), 49.8 (s, NCH2), 50.0 (s, SCH2S), 191.5 (s, CS). MS (m/z): 306.5 (M+). Anal. Calcd for C11H18N2S4: C, 43.10; H, 5.92; N, 9.14. Found: C, 43.31; H, 5.69; N, 9.02.

Refinement

Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and the occupancies are refined to 0.546 (4) and 0.454 (4).

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing two independent molecules and the 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of (I), showing two different packing patterns.

Crystal data

C11H18N2S4 F(000) = 648
Mr = 306.51 Dx = 1.417 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 2540 reflections
a = 21.9118 (18) Å θ = 2.3–26.6°
b = 4.5705 (4) Å µ = 0.64 mm1
c = 14.3452 (12) Å T = 150 K
V = 1436.6 (2) Å3 Block, light-brown
Z = 4 0.25 × 0.25 × 0.15 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3292 independent reflections
Radiation source: fine-focus sealed tube 2759 reflections with I > 2σ(I)
graphite Rint = 0.043
ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −28→28
Tmin = 0.856, Tmax = 0.910 k = −5→5
17016 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062 H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.1007P)2 + 0.6346P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.003
3292 reflections Δρmax = 1.05 e Å3
180 parameters Δρmin = −0.27 e Å3
17 restraints Absolute structure: Flack (1983), 1579 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.1 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.34241 (4) 0.48896 (18) 0.20742 (6) 0.0247 (3)
S2 0.24742 (5) 0.4861 (2) 0.05150 (8) 0.0332 (3)
S3 0.40977 (4) 0.48200 (19) 0.02225 (7) 0.0292 (3)
S4 0.50250 (6) 0.4996 (2) 0.18040 (8) 0.0333 (3)
N1 0.23596 (13) 0.7324 (7) 0.2179 (2) 0.0280 (7)
N2 0.51532 (12) 0.7401 (7) 0.0131 (2) 0.0292 (7)
C1 0.2724 (4) 0.593 (2) 0.1603 (7) 0.0232 (12) 0.546 (4)
C2 0.1742 (5) 0.840 (3) 0.1934 (7) 0.0354 (9) 0.546 (4)
H2A 0.1450 0.6753 0.1894 0.043* 0.546 (4)
H2B 0.1749 0.9430 0.1327 0.043* 0.546 (4)
C3 0.1558 (4) 1.0519 (19) 0.2724 (6) 0.0388 (19) 0.546 (4)
H3A 0.1691 1.2541 0.2580 0.047* 0.546 (4)
H3B 0.1111 1.0507 0.2820 0.047* 0.546 (4)
C4 0.1889 (4) 0.935 (2) 0.3579 (6) 0.039 (2) 0.546 (4)
H4A 0.1669 0.7670 0.3857 0.047* 0.546 (4)
H4B 0.1943 1.0887 0.4057 0.047* 0.546 (4)
C5 0.2514 (4) 0.838 (2) 0.3155 (7) 0.0288 (11) 0.546 (4)
H5A 0.2803 1.0043 0.3132 0.035* 0.546 (4)
H5B 0.2698 0.6784 0.3528 0.035* 0.546 (4)
C1' 0.2682 (6) 0.549 (3) 0.1543 (10) 0.0232 (12) 0.454 (4)
C2' 0.1763 (6) 0.843 (4) 0.1926 (8) 0.0354 (9) 0.454 (4)
H2'A 0.1520 0.6948 0.1589 0.043* 0.454 (4)
H2'B 0.1794 1.0226 0.1541 0.043* 0.454 (4)
C3' 0.1491 (4) 0.910 (2) 0.2897 (7) 0.0388 (19) 0.454 (4)
H3'A 0.1174 1.0640 0.2862 0.047* 0.454 (4)
H3'B 0.1314 0.7321 0.3184 0.047* 0.454 (4)
C4' 0.2053 (4) 1.016 (2) 0.3437 (9) 0.039 (2) 0.454 (4)
H4'A 0.1985 1.0058 0.4119 0.047* 0.454 (4)
H4'B 0.2164 1.2183 0.3262 0.047* 0.454 (4)
C5' 0.2549 (5) 0.793 (3) 0.3119 (10) 0.0288 (11) 0.454 (4)
H5'A 0.2962 0.8811 0.3136 0.035* 0.454 (4)
H5'B 0.2544 0.6145 0.3508 0.035* 0.454 (4)
C6 0.4816 (3) 0.6102 (15) 0.0724 (6) 0.0200 (9)* 0.546 (4)
C7 0.5772 (5) 0.855 (3) 0.0389 (7) 0.0366 (10) 0.546 (4)
H7A 0.6075 0.6954 0.0428 0.044* 0.546 (4)
H7B 0.5760 0.9611 0.0990 0.044* 0.546 (4)
C8 0.5912 (4) 1.0600 (16) −0.0409 (6) 0.033 (2) 0.546 (4)
H8A 0.5747 1.2579 −0.0287 0.040* 0.546 (4)
H8B 0.6358 1.0747 −0.0513 0.040* 0.546 (4)
C9 0.5603 (4) 0.9224 (18) −0.1231 (5) 0.0301 (17) 0.546 (4)
H9A 0.5837 0.7523 −0.1464 0.036* 0.546 (4)
H9B 0.5551 1.0652 −0.1743 0.036* 0.546 (4)
C10 0.4984 (4) 0.827 (3) −0.0837 (8) 0.0322 (10) 0.546 (4)
H10A 0.4687 0.9902 −0.0839 0.039* 0.546 (4)
H10B 0.4813 0.6600 −0.1191 0.039* 0.546 (4)
C6' 0.4807 (5) 0.551 (2) 0.0695 (8) 0.0200 (9)* 0.454 (4)
C7' 0.5740 (6) 0.853 (4) 0.0417 (8) 0.0366 (10) 0.454 (4)
H7'A 0.5983 0.7013 0.0740 0.044* 0.454 (4)
H7'B 0.5693 1.0245 0.0832 0.044* 0.454 (4)
C8' 0.6031 (4) 0.939 (2) −0.0505 (8) 0.033 (2) 0.454 (4)
H8'A 0.6318 1.1039 −0.0417 0.040* 0.454 (4)
H8'B 0.6256 0.7717 −0.0778 0.040* 0.454 (4)
C9' 0.5511 (5) 1.027 (2) −0.1120 (8) 0.0301 (17) 0.454 (4)
H9'A 0.5618 1.0074 −0.1788 0.036* 0.454 (4)
H9'B 0.5383 1.2315 −0.0996 0.036* 0.454 (4)
C10' 0.5010 (5) 0.808 (4) −0.0837 (10) 0.0322 (10) 0.454 (4)
H10C 0.4599 0.8968 −0.0892 0.039* 0.454 (4)
H10D 0.5027 0.6299 −0.1230 0.039* 0.454 (4)
C11 0.37625 (18) 0.2698 (7) 0.1150 (4) 0.0358 (8)
H11A 0.4081 0.1426 0.1423 0.043*
H11B 0.3444 0.1413 0.0882 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0171 (4) 0.0341 (5) 0.0230 (6) 0.0012 (3) −0.0019 (4) 0.0022 (3)
S2 0.0255 (5) 0.0514 (7) 0.0228 (6) −0.0023 (4) 0.0000 (4) −0.0059 (4)
S3 0.0214 (5) 0.0404 (6) 0.0259 (7) −0.0009 (3) 0.0048 (4) −0.0009 (4)
S4 0.0291 (5) 0.0535 (8) 0.0174 (6) 0.0030 (4) 0.0006 (4) 0.0072 (4)
N1 0.0272 (14) 0.0342 (15) 0.0226 (15) 0.0002 (12) 0.0001 (12) 0.0005 (12)
N2 0.0245 (13) 0.0388 (17) 0.0244 (15) 0.0028 (12) 0.0007 (12) 0.0005 (13)
C1 0.0175 (18) 0.031 (3) 0.0217 (19) −0.0108 (19) 0.0036 (15) 0.003 (2)
C2 0.0293 (18) 0.049 (2) 0.0284 (18) 0.0045 (17) −0.0025 (15) −0.0022 (18)
C3 0.044 (3) 0.042 (5) 0.030 (4) 0.011 (3) 0.016 (3) 0.014 (3)
C4 0.026 (4) 0.059 (5) 0.033 (4) −0.008 (3) 0.008 (3) −0.002 (3)
C5 0.0359 (19) 0.025 (3) 0.0251 (18) 0.0014 (19) −0.0016 (16) −0.007 (2)
C1' 0.0175 (18) 0.031 (3) 0.0217 (19) −0.0108 (19) 0.0036 (15) 0.003 (2)
C2' 0.0293 (18) 0.049 (2) 0.0284 (18) 0.0045 (17) −0.0025 (15) −0.0022 (18)
C3' 0.044 (3) 0.042 (5) 0.030 (4) 0.011 (3) 0.016 (3) 0.014 (3)
C4' 0.026 (4) 0.059 (5) 0.033 (4) −0.008 (3) 0.008 (3) −0.002 (3)
C5' 0.0359 (19) 0.025 (3) 0.0251 (18) 0.0014 (19) −0.0016 (16) −0.007 (2)
C7 0.0239 (18) 0.053 (3) 0.033 (2) −0.0054 (17) −0.0006 (16) 0.0003 (19)
C8 0.028 (3) 0.020 (5) 0.052 (5) 0.003 (3) −0.010 (3) 0.009 (3)
C9 0.039 (3) 0.030 (5) 0.021 (3) 0.005 (3) 0.013 (3) 0.000 (3)
C10 0.037 (2) 0.036 (2) 0.0245 (19) 0.0014 (17) −0.0037 (15) −0.0016 (17)
C7' 0.0239 (18) 0.053 (3) 0.033 (2) −0.0054 (17) −0.0006 (16) 0.0003 (19)
C8' 0.028 (3) 0.020 (5) 0.052 (5) 0.003 (3) −0.010 (3) 0.009 (3)
C9' 0.039 (3) 0.030 (5) 0.021 (3) 0.005 (3) 0.013 (3) 0.000 (3)
C10' 0.037 (2) 0.036 (2) 0.0245 (19) 0.0014 (17) −0.0037 (15) −0.0016 (17)
C11 0.0294 (15) 0.0314 (17) 0.047 (2) −0.0009 (17) 0.0098 (14) 0.003 (2)

Geometric parameters (Å, °)

S1—C1 1.743 (10) C2'—H2'A 0.9900
S1—C1' 1.816 (14) C2'—H2'B 0.9900
S1—C11 1.820 (5) C3'—C4' 1.533 (12)
S2—C1' 1.571 (14) C3'—H3'A 0.9900
S2—C1 1.725 (10) C3'—H3'B 0.9900
S3—C6' 1.724 (11) C4'—C5' 1.556 (12)
S3—C11 1.802 (5) C4'—H4'A 0.9900
S3—C6 1.827 (8) C4'—H4'B 0.9900
S4—C6' 1.678 (12) C5'—H5'A 0.9900
S4—C6 1.693 (8) C5'—H5'B 0.9900
N1—C1 1.313 (10) C7—C8 1.511 (11)
N1—C1' 1.426 (13) C7—H7A 0.9900
N1—C5' 1.438 (13) C7—H7B 0.9900
N1—C2' 1.448 (14) C8—C9 1.498 (10)
N1—C2 1.483 (11) C8—H8A 0.9900
N1—C5 1.520 (10) C8—H8B 0.9900
N2—C6 1.273 (8) C9—C10 1.531 (10)
N2—C6' 1.406 (11) C9—H9A 0.9900
N2—C7' 1.445 (13) C9—H9B 0.9900
N2—C10' 1.457 (14) C10—H10A 0.9900
N2—C10 1.491 (11) C10—H10B 0.9900
N2—C7 1.500 (11) C7'—C8' 1.520 (12)
C2—C3 1.543 (11) C7'—H7'A 0.9900
C2—H2A 0.9900 C7'—H7'B 0.9900
C2—H2B 0.9900 C8'—C9' 1.498 (11)
C3—C4 1.522 (10) C8'—H8'A 0.9900
C3—H3A 0.9900 C8'—H8'B 0.9900
C3—H3B 0.9900 C9'—C10' 1.541 (12)
C4—C5 1.563 (10) C9'—H9'A 0.9900
C4—H4A 0.9900 C9'—H9'B 0.9900
C4—H4B 0.9900 C10'—H10C 0.9900
C5—H5A 0.9900 C10'—H10D 0.9900
C5—H5B 0.9900 C11—H11A 0.9900
C2'—C3' 1.546 (12) C11—H11B 0.9900
C1—S1—C1' 7.3 (7) C2'—C3'—H3'A 111.4
C1—S1—C11 103.1 (4) C4'—C3'—H3'B 111.4
C1'—S1—C11 98.2 (5) C2'—C3'—H3'B 111.4
C1'—S2—C1 6.3 (9) H3'A—C3'—H3'B 109.2
C6'—S3—C11 100.1 (4) C3'—C4'—C5' 101.9 (9)
C6'—S3—C6 8.2 (4) C3'—C4'—H4'A 111.4
C11—S3—C6 103.5 (3) C5'—C4'—H4'A 111.4
C6'—S4—C6 9.3 (5) C3'—C4'—H4'B 111.4
C1—N1—C1' 8.8 (10) C5'—C4'—H4'B 111.4
C1—N1—C5' 120.5 (7) H4'A—C4'—H4'B 109.2
C1'—N1—C5' 124.8 (7) N1—C5'—C4' 101.6 (8)
C1—N1—C2' 124.2 (7) N1—C5'—H5'A 111.5
C1'—N1—C2' 119.6 (7) C4'—C5'—H5'A 111.5
C5'—N1—C2' 115.3 (6) N1—C5'—H5'B 111.5
C1—N1—C2 124.6 (6) C4'—C5'—H5'B 111.5
C1'—N1—C2 119.8 (7) H5'A—C5'—H5'B 109.3
C5'—N1—C2 114.9 (6) N2—C6—S4 126.4 (5)
C2'—N1—C2 1.5 (13) N2—C6—S3 112.7 (5)
C1—N1—C5 126.7 (6) S4—C6—S3 119.8 (4)
C1'—N1—C5 131.7 (7) N2—C7—C8 102.4 (7)
C5'—N1—C5 8.1 (8) N2—C7—H7A 111.3
C2'—N1—C5 108.7 (6) C8—C7—H7A 111.3
C2—N1—C5 108.4 (5) N2—C7—H7B 111.3
C6—N2—C6' 10.3 (7) C8—C7—H7B 111.3
C6—N2—C7' 119.5 (6) H7A—C7—H7B 109.2
C6'—N2—C7' 122.4 (7) C9—C8—C7 104.1 (7)
C6—N2—C10' 127.7 (6) C9—C8—H8A 110.9
C6'—N2—C10' 124.3 (7) C7—C8—H8A 110.9
C7'—N2—C10' 112.7 (6) C9—C8—H8B 110.9
C6—N2—C10 127.1 (5) C7—C8—H8B 110.9
C6'—N2—C10 124.5 (6) H8A—C8—H8B 109.0
C7'—N2—C10 113.0 (6) C8—C9—C10 103.3 (7)
C10'—N2—C10 3.8 (12) C8—C9—H9A 111.1
C6—N2—C7 121.5 (5) C10—C9—H9A 111.1
C6'—N2—C7 124.1 (6) C8—C9—H9B 111.1
C7'—N2—C7 2.3 (9) C10—C9—H9B 111.1
C10'—N2—C7 110.8 (6) H9A—C9—H9B 109.1
C10—N2—C7 111.1 (5) N2—C10—C9 101.5 (6)
N1—C1—S2 120.9 (7) N2—C10—H10A 111.5
N1—C1—S1 115.1 (7) C9—C10—H10A 111.5
S2—C1—S1 123.6 (6) N2—C10—H10B 111.5
N1—C2—C3 105.8 (7) C9—C10—H10B 111.5
N1—C2—H2A 110.6 H10A—C10—H10B 109.3
C3—C2—H2A 110.6 N2—C6'—S4 118.6 (7)
N1—C2—H2B 110.6 N2—C6'—S3 111.9 (7)
C3—C2—H2B 110.6 S4—C6'—S3 127.1 (6)
H2A—C2—H2B 108.7 N2—C7'—C8' 102.7 (8)
C4—C3—C2 104.3 (7) N2—C7'—H7'A 111.2
C4—C3—H3A 110.9 C8'—C7'—H7'A 111.2
C2—C3—H3A 110.9 N2—C7'—H7'B 111.2
C4—C3—H3B 110.9 C8'—C7'—H7'B 111.2
C2—C3—H3B 110.9 H7'A—C7'—H7'B 109.1
H3A—C3—H3B 108.9 C9'—C8'—C7' 105.2 (9)
C3—C4—C5 101.8 (7) C9'—C8'—H8'A 110.7
C3—C4—H4A 111.4 C7'—C8'—H8'A 110.7
C5—C4—H4A 111.4 C9'—C8'—H8'B 110.7
C3—C4—H4B 111.4 C7'—C8'—H8'B 110.7
C5—C4—H4B 111.4 H8'A—C8'—H8'B 108.8
H4A—C4—H4B 109.3 C8'—C9'—C10' 102.2 (9)
N1—C5—C4 104.6 (6) C8'—C9'—H9'A 111.3
N1—C5—H5A 110.8 C10'—C9'—H9'A 111.3
C4—C5—H5A 110.8 C8'—C9'—H9'B 111.3
N1—C5—H5B 110.8 C10'—C9'—H9'B 111.3
C4—C5—H5B 110.8 H9'A—C9'—H9'B 109.2
H5A—C5—H5B 108.9 N2—C10'—C9' 103.7 (9)
N1—C1'—S2 124.3 (9) N2—C10'—H10C 111.0
N1—C1'—S1 105.3 (8) C9'—C10'—H10C 111.0
S2—C1'—S1 128.8 (8) N2—C10'—H10D 111.0
N1—C2'—C3' 101.0 (8) C9'—C10'—H10D 111.0
N1—C2'—H2'A 111.6 H10C—C10'—H10D 109.0
C3'—C2'—H2'A 111.6 S3—C11—S1 114.05 (18)
N1—C2'—H2'B 111.6 S3—C11—H11A 108.7
C3'—C2'—H2'B 111.6 S1—C11—H11A 108.7
H2'A—C2'—H2'B 109.4 S3—C11—H11B 108.7
C4'—C3'—C2' 102.0 (9) S1—C11—H11B 108.7
C4'—C3'—H3'A 111.4 H11A—C11—H11B 107.6
C1'—N1—C1—S2 52 (6) C10'—N2—C6—S4 172.3 (10)
C5'—N1—C1—S2 173.4 (8) C10—N2—C6—S4 177.1 (8)
C2'—N1—C1—S2 −8.8 (15) C7—N2—C6—S4 −9.9 (11)
C2—N1—C1—S2 −7.1 (13) C6'—N2—C6—S3 −70 (4)
C5—N1—C1—S2 179.6 (7) C7'—N2—C6—S3 −179.6 (10)
C1'—N1—C1—S1 −120 (7) C10'—N2—C6—S3 4.0 (12)
C5'—N1—C1—S1 0.9 (12) C10—N2—C6—S3 8.7 (10)
C2'—N1—C1—S1 178.7 (10) C7—N2—C6—S3 −178.2 (7)
C2—N1—C1—S1 −179.6 (8) C6'—S4—C6—N2 −114 (4)
C5—N1—C1—S1 7.1 (12) C6'—S4—C6—S3 54 (3)
C1'—S2—C1—N1 −95 (7) C6'—S3—C6—N2 106 (4)
C1'—S2—C1—S1 77 (7) C11—S3—C6—N2 172.9 (4)
C1'—S1—C1—N1 126 (6) C6'—S3—C6—S4 −63 (4)
C11—S1—C1—N1 173.6 (7) C11—S3—C6—S4 3.7 (5)
C1'—S1—C1—S2 −47 (6) C6—N2—C7—C8 −164.2 (6)
C11—S1—C1—S2 1.4 (8) C6'—N2—C7—C8 −176.1 (7)
C1—N1—C2—C3 −166.2 (8) C7'—N2—C7—C8 −133 (32)
C1'—N1—C2—C3 −174.8 (9) C10'—N2—C7—C8 13.9 (13)
C5'—N1—C2—C3 13.3 (13) C10—N2—C7—C8 9.8 (12)
C2'—N1—C2—C3 −93 (32) N2—C7—C8—C9 −32.0 (10)
C5—N1—C2—C3 8.1 (11) C7—C8—C9—C10 42.8 (10)
N1—C2—C3—C4 −29.8 (11) C6—N2—C10—C9 −170.8 (6)
C2—C3—C4—C5 38.6 (10) C6'—N2—C10—C9 −158.5 (7)
C1—N1—C5—C4 −169.9 (8) C7'—N2—C10—C9 17.1 (13)
C1'—N1—C5—C4 −160.6 (9) C10'—N2—C10—C9 −70 (11)
C5'—N1—C5—C4 −128 (7) C7—N2—C10—C9 15.6 (11)
C2'—N1—C5—C4 17.5 (11) C8—C9—C10—N2 −35.2 (10)
C2—N1—C5—C4 15.9 (10) C6—N2—C6'—S4 −66 (4)
C3—C4—C5—N1 −33.6 (9) C7'—N2—C6'—S4 10.4 (13)
C1—N1—C1'—S2 −116 (7) C10'—N2—C6'—S4 −179.0 (9)
C5'—N1—C1'—S2 −179.4 (10) C10—N2—C6'—S4 −174.4 (8)
C2'—N1—C1'—S2 7.9 (17) C7—N2—C6'—S4 12.3 (12)
C2—N1—C1'—S2 9.6 (16) C6—N2—C6'—S3 97 (4)
C5—N1—C1'—S2 −174.2 (8) C7'—N2—C6'—S3 174.0 (10)
C1—N1—C1'—S1 51 (6) C10'—N2—C6'—S3 −15.4 (12)
C5'—N1—C1'—S1 −12.6 (13) C10—N2—C6'—S3 −10.8 (11)
C2'—N1—C1'—S1 174.7 (10) C7—N2—C6'—S3 175.9 (8)
C2—N1—C1'—S1 176.4 (8) C6—S4—C6'—N2 49 (3)
C5—N1—C1'—S1 −7.3 (14) C6—S4—C6'—S3 −111 (4)
C1—S2—C1'—N1 73 (7) C11—S3—C6'—N2 −174.7 (6)
C1—S2—C1'—S1 −91 (7) C6—S3—C6'—N2 −60 (4)
C1—S1—C1'—N1 −45 (5) C11—S3—C6'—S4 −12.9 (7)
C11—S1—C1'—N1 −177.6 (7) C6—S3—C6'—S4 102 (4)
C1—S1—C1'—S2 121 (7) C6—N2—C7'—C8' 170.5 (8)
C11—S1—C1'—S2 −11.6 (12) C6'—N2—C7'—C8' 159.0 (8)
C1—N1—C2'—C3' 166.3 (8) C10'—N2—C7'—C8' −12.6 (16)
C1'—N1—C2'—C3' 157.5 (10) C10—N2—C7'—C8' −16.7 (15)
C5'—N1—C2'—C3' −15.8 (15) C7—N2—C7'—C8' 21 (30)
C2—N1—C2'—C3' 59 (31) N2—C7'—C8'—C9' 31.1 (14)
C5—N1—C2'—C3' −20.9 (13) C7'—C8'—C9'—C10' −37.1 (14)
N1—C2'—C3'—C4' 35.6 (13) C6—N2—C10'—C9' 166.5 (7)
C2'—C3'—C4'—C5' −42.5 (12) C6'—N2—C10'—C9' 178.5 (7)
C1—N1—C5'—C4' 167.5 (8) C7'—N2—C10'—C9' −10.1 (15)
C1'—N1—C5'—C4' 176.6 (9) C10—N2—C10'—C9' 84 (11)
C2'—N1—C5'—C4' −10.5 (14) C7—N2—C10'—C9' −11.4 (14)
C2—N1—C5'—C4' −12.0 (12) C8'—C9'—C10'—N2 28.7 (13)
C5—N1—C5'—C4' 26 (6) C6'—S3—C11—S1 84.1 (4)
C3'—C4'—C5'—N1 32.6 (11) C6—S3—C11—S1 76.5 (3)
C6'—N2—C6—S4 98 (4) C1—S1—C11—S3 79.2 (4)
C7'—N2—C6—S4 −11.3 (12) C1'—S1—C11—S3 84.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···S3i 0.99 2.89 3.811 (9) 155
C10—H10B···S4ii 0.99 2.99 3.699 (11) 130
C9—H9A···S1ii 0.99 2.87 3.740 (8) 147
C9'—H9'A···S1ii 0.99 3.50 4.209 (11) 131
C5'—H5'B···S2i 0.99 2.94 3.704 (14) 137

Symmetry codes: (i) −x+1/2, y, z+1/2; (ii) −x+1, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2162).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chou, W. L., Chang, H. H., Yih, K. H. & Lee, G. H. (2007). J. Chin. Chem. Soc.54, 323–330.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Heckley, P. R., Holah, D. G., Hughes, A. N. & Leh, F. (1970). Can. J. Chem.48, 3827–3830.
  6. Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023. [DOI] [PMC free article] [PubMed]
  7. Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
  8. Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o1169–o1170. [DOI] [PMC free article] [PubMed]
  9. Sharma, S., Bohra, R. & Mehrotra, R. C. (1991). J. Crystallogr. Spectrosc. Res.21, 61–66.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Thomas, J. C. (1945). US Patent 2 384 577.
  12. Thomas, J. C. (1946). Chem. Abstr.40, 177.
  13. Vangala, V. R., Desiraju, G. R., Jetti, R. K. R., Bläser, D. & Boese, R. (2002). Acta Cryst. C58, o635–o636. [DOI] [PubMed]
  14. Yaqub, M., Pervez, H., Arif, N., Tahir, M. N. & Hussain, M. (2010). Acta Cryst. E66, o1696. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046027/bv2162sup1.cif

e-66-o3193-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046027/bv2162Isup2.hkl

e-66-o3193-Isup2.hkl (161.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES