Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 6;66(Pt 12):o3100. doi: 10.1107/S1600536810045046

N-(3-Chloro­phen­yl)-2-hy­droxy­benzamide

Abdul Rauf Raza a, Bushra Nisar a, M Nawaz Tahir b,*, Sumaira Shamshad a
PMCID: PMC3011749  PMID: 21589406

Abstract

In the title compound, C13H10ClNO2, the dihedral angle between the aromatic rings is 5.57 (9)° and intra­molecular N—H⋯O and C—H⋯O hydrogen bonds both generate S(6) rings. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into C(6) chains propagating along [010]. Mol­ecules from neighbouring chains along the z axis are involved in C—H⋯π and π–π stacking inter­actions [centroid–centroid distance = 3.9340 (10) Å].

Related literature

For pharmacological background to this work, see: Coupet et al. (1979); Pae et al. (2004). For related structures, see: Raza et al. (2009, 2010a ,b ). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o3100-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO2

  • M r = 247.67

  • Monoclinic, Inline graphic

  • a = 13.4638 (5) Å

  • b = 11.9019 (4) Å

  • c = 7.1764 (2) Å

  • β = 98.808 (2)°

  • V = 1136.42 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.982, T max = 0.987

  • 10332 measured reflections

  • 2806 independent reflections

  • 1827 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.115

  • S = 1.03

  • 2806 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045046/gk2313sup1.cif

e-66-o3100-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045046/gk2313Isup2.hkl

e-66-o3100-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.88 (2) 1.73 (2) 2.6016 (18) 173 (2)
N1—H1A⋯O1 0.88 (2) 1.85 (2) 2.606 (2) 143.4 (18)
C13—H13⋯O2 0.93 2.30 2.869 (2) 119
C6—H6⋯Cg1ii 0.93 2.89 3.675 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

Benzoxazepines are known for their mild tranquilizing activities. Different synthetic derivatives of benzoxazepine are potential biological candidates and exhibit a wide range of biological activities, e.g., anti-inflammatory activity (Pae et al., 2004), anti-depressant and anti-psychotic activity (Coupet et al., 1979). The title compound (I, Fig. 1) has been prepared as a precursor for the asymmetric synthesis of benzoxazepines.

We have reported the crystal structures of (II) i.e., N-(4-chlorophenyl) -2-hydroxybenzamide (Raza et al., 2010a), (III) 2-hydroxy-5-nitro -N-phenylbenzamide (Raza et al., 2010b) and (IV) 2-hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) which are related to the title compound. The title compound differs from (II) due to attachment of chloro group at position-3 instead of position-4.

In (I), the phenyl rings A (C1–C6) of 2-hydroxyphenyl is planar with r. m. s. deviation of 0.012 Å and the O-atom of hydroxy group [O1] is at a distance of -0.078 (2) Å. Similary the phenyl ring B (C8—C13) of 3-chloroanilinic group is planar with r. m. s. deviation of 0.004 Å and the chloro group [CL1] is at a distance of -0.076 (2) Å. The dihedral angle between A/B is 5.57 (9)°. There exist intramolecular H-bonds of N—H···O and C—H···O types (Table 1, Fig. 1) completing S(6) ring motifs (Bernstein et al., 1995). The molecules are arranged to form one dimensional polymeric chains extending along the crystallographic b axis due to intermolecular H-bonds of O—H···O type (Table 1, Fig. 2). The C—H···π interactions (Table 1) and π–π interactions [the centroids of both aromatic rings at a distance of 3.934 (10) Å (symmetry: 1 - x, - y, 1 - z)] play an important role in stabilization of the crystal.

Experimental

To a well stirred solution of 2-hydroxybenzoic acid (1.38 g, 0.01 mol, 1 eq) and SOCl2 (0.87 ml, 1.42 g, 0.012 mol, 1.2 eq) in dry CHCl3, 3-chloroaniline (1.05 ml, 1.27 g, 0.01 mol, 1 eq) and Et3N (2.08 ml, 1.5 g, 0.015 mol, 1.5 eq) was added slowly at room temperature, followed by reflux for three hours. After the completion of the reaction, the reaction mixture was cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and the title compound was obtained as a white solid. The crude solid was filtered off and recrystallized from CHCl3 to afford white prisms.

Refinement

The coordinates of H atoms of the amide and hydroxy groups were refined whereas the remaining H atoms were positioned geometrically with C–H = 0.93 Å and were included in the refinement in the riding model approximation. The isotropic displacement parameters of H atoms were set as Uiso(H) = 1.2Ueq(C, N, O).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line indicates intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

One dimensional polymeric chains via hydrogen bonds - view parallel to the b axis (PLATON; Spek, 2009).

Crystal data

C13H10ClNO2 F(000) = 512
Mr = 247.67 Dx = 1.448 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1827 reflections
a = 13.4638 (5) Å θ = 1.5–28.5°
b = 11.9019 (4) Å µ = 0.32 mm1
c = 7.1764 (2) Å T = 296 K
β = 98.808 (2)° Prism, white
V = 1136.42 (7) Å3 0.24 × 0.16 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2806 independent reflections
Radiation source: fine-focus sealed tube 1827 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 7.5 pixels mm-1 θmax = 28.5°, θmin = 2.3°
ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −15→15
Tmin = 0.982, Tmax = 0.987 l = −5→9
10332 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.1662P] where P = (Fo2 + 2Fc2)/3
2806 reflections (Δ/σ)max = 0.001
161 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.95784 (4) −0.09691 (5) 0.80925 (10) 0.0858 (3)
O1 0.49322 (9) −0.04858 (10) 0.79519 (19) 0.0502 (3)
H1 0.4719 (16) −0.1099 (18) 0.840 (3) 0.071 (7)*
O2 0.55912 (9) 0.26044 (9) 0.57224 (17) 0.0480 (3)
N1 0.61841 (11) 0.09050 (11) 0.6738 (2) 0.0414 (3)
H1A 0.5995 (13) 0.0264 (16) 0.714 (2) 0.050*
C1 0.44202 (12) 0.13109 (13) 0.6707 (2) 0.0365 (4)
C2 0.41952 (12) 0.02934 (13) 0.7532 (2) 0.0389 (4)
C3 0.32279 (13) 0.00851 (15) 0.7912 (2) 0.0461 (4)
H3 0.3090 −0.0579 0.8505 0.055*
C4 0.24770 (14) 0.08575 (16) 0.7414 (3) 0.0522 (5)
H4 0.1834 0.0714 0.7677 0.063*
C5 0.26700 (13) 0.18469 (15) 0.6526 (3) 0.0536 (5)
H5 0.2155 0.2358 0.6160 0.064*
C6 0.36320 (13) 0.20707 (14) 0.6187 (2) 0.0452 (4)
H6 0.3760 0.2741 0.5600 0.054*
C7 0.54346 (12) 0.16594 (13) 0.6345 (2) 0.0367 (4)
C8 0.72051 (13) 0.10029 (13) 0.6548 (2) 0.0390 (4)
C9 0.78234 (13) 0.01425 (15) 0.7347 (2) 0.0456 (4)
H9 0.7562 −0.0433 0.8002 0.055*
C10 0.88287 (14) 0.01472 (16) 0.7165 (3) 0.0522 (5)
C11 0.92390 (15) 0.09982 (18) 0.6235 (3) 0.0589 (5)
H11 0.9920 0.1001 0.6141 0.071*
C12 0.86155 (14) 0.18490 (16) 0.5443 (3) 0.0547 (5)
H12 0.8883 0.2427 0.4802 0.066*
C13 0.76052 (13) 0.18621 (14) 0.5579 (2) 0.0467 (4)
H13 0.7196 0.2439 0.5030 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0602 (4) 0.0860 (5) 0.1122 (5) 0.0296 (3) 0.0165 (3) 0.0241 (4)
O1 0.0486 (7) 0.0319 (7) 0.0723 (9) 0.0043 (6) 0.0163 (6) 0.0114 (6)
O2 0.0565 (8) 0.0283 (6) 0.0615 (8) 0.0036 (5) 0.0166 (6) 0.0055 (5)
N1 0.0423 (8) 0.0303 (7) 0.0532 (9) 0.0016 (6) 0.0123 (6) 0.0043 (6)
C1 0.0434 (9) 0.0304 (8) 0.0350 (8) 0.0017 (7) 0.0033 (7) −0.0061 (6)
C2 0.0437 (9) 0.0322 (8) 0.0402 (9) 0.0015 (7) 0.0044 (7) −0.0051 (7)
C3 0.0465 (10) 0.0411 (10) 0.0506 (10) −0.0058 (8) 0.0076 (8) −0.0008 (8)
C4 0.0391 (10) 0.0557 (12) 0.0611 (11) −0.0035 (8) 0.0056 (8) −0.0098 (9)
C5 0.0431 (10) 0.0474 (11) 0.0666 (12) 0.0093 (8) −0.0040 (9) −0.0048 (9)
C6 0.0463 (10) 0.0362 (9) 0.0507 (10) 0.0044 (8) −0.0010 (8) −0.0024 (7)
C7 0.0456 (9) 0.0273 (8) 0.0370 (8) 0.0027 (7) 0.0062 (7) −0.0049 (6)
C8 0.0426 (9) 0.0351 (9) 0.0404 (9) 0.0006 (7) 0.0095 (7) −0.0055 (7)
C9 0.0472 (10) 0.0415 (10) 0.0495 (10) 0.0040 (8) 0.0122 (8) 0.0022 (8)
C10 0.0467 (10) 0.0532 (11) 0.0563 (11) 0.0094 (9) 0.0065 (8) −0.0018 (9)
C11 0.0426 (10) 0.0674 (13) 0.0679 (13) −0.0031 (10) 0.0125 (9) −0.0082 (10)
C12 0.0542 (11) 0.0509 (11) 0.0617 (12) −0.0099 (9) 0.0174 (9) −0.0004 (9)
C13 0.0507 (10) 0.0394 (10) 0.0508 (10) −0.0028 (8) 0.0105 (8) 0.0000 (8)

Geometric parameters (Å, °)

Cl1—C10 1.7381 (19) C4—H4 0.9300
O1—C2 1.3579 (19) C5—C6 1.380 (2)
O1—H1 0.87 (2) C5—H5 0.9300
O2—C7 1.2400 (19) C6—H6 0.9300
N1—C7 1.348 (2) C8—C9 1.387 (2)
N1—C8 1.407 (2) C8—C13 1.391 (2)
N1—H1A 0.866 (18) C9—C10 1.380 (2)
C1—C6 1.401 (2) C9—H9 0.9300
C1—C2 1.401 (2) C10—C11 1.375 (3)
C1—C7 1.488 (2) C11—C12 1.381 (3)
C2—C3 1.393 (2) C11—H11 0.9300
C3—C4 1.373 (2) C12—C13 1.379 (2)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.383 (3) C13—H13 0.9300
C2—O1—H1 112.7 (14) O2—C7—N1 121.10 (15)
C7—N1—C8 129.47 (14) O2—C7—C1 121.81 (14)
C7—N1—H1A 114.0 (12) N1—C7—C1 117.09 (14)
C8—N1—H1A 116.5 (12) C9—C8—C13 119.72 (16)
C6—C1—C2 117.81 (15) C9—C8—N1 115.60 (14)
C6—C1—C7 116.86 (14) C13—C8—N1 124.65 (15)
C2—C1—C7 125.34 (14) C10—C9—C8 119.55 (17)
O1—C2—C3 120.55 (15) C10—C9—H9 120.2
O1—C2—C1 119.08 (15) C8—C9—H9 120.2
C3—C2—C1 120.37 (15) C11—C10—C9 121.47 (18)
C4—C3—C2 120.22 (16) C11—C10—Cl1 119.74 (15)
C4—C3—H3 119.9 C9—C10—Cl1 118.78 (15)
C2—C3—H3 119.9 C10—C11—C12 118.42 (18)
C3—C4—C5 120.50 (17) C10—C11—H11 120.8
C3—C4—H4 119.7 C12—C11—H11 120.8
C5—C4—H4 119.7 C13—C12—C11 121.54 (18)
C6—C5—C4 119.56 (17) C13—C12—H12 119.2
C6—C5—H5 120.2 C11—C12—H12 119.2
C4—C5—H5 120.2 C12—C13—C8 119.29 (17)
C5—C6—C1 121.45 (16) C12—C13—H13 120.4
C5—C6—H6 119.3 C8—C13—H13 120.4
C1—C6—H6 119.3
C8—N1—C7—O2 −0.4 (3) C1—C2—C3—C4 2.6 (3)
C8—N1—C7—C1 −179.66 (16) C2—C3—C4—C5 0.2 (3)
C7—N1—C8—C9 170.31 (17) C3—C4—C5—C6 −1.8 (3)
C7—N1—C8—C13 −11.9 (3) C4—C5—C6—C1 0.7 (3)
C6—C1—C2—O1 176.28 (15) N1—C8—C9—C10 177.43 (18)
C6—C1—C2—C3 −3.6 (2) C13—C8—C9—C10 −0.4 (3)
C7—C1—C2—O1 −4.1 (2) N1—C8—C13—C12 −178.15 (19)
C7—C1—C2—C3 176.04 (16) C9—C8—C13—C12 −0.5 (3)
C2—C1—C6—C5 2.0 (3) C8—C9—C10—Cl1 −177.25 (16)
C7—C1—C6—C5 −177.67 (17) C8—C9—C10—C11 1.4 (3)
C2—C1—C7—O2 −175.16 (15) Cl1—C10—C11—C12 177.29 (17)
C2—C1—C7—N1 4.1 (2) C9—C10—C11—C12 −1.3 (3)
C6—C1—C7—O2 4.5 (2) C10—C11—C12—C13 0.4 (3)
C6—C1—C7—N1 −176.25 (15) C11—C12—C13—C8 0.5 (3)
O1—C2—C3—C4 −177.32 (17)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring
D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.88 (2) 1.73 (2) 2.6016 (18) 173 (2)
N1—H1A···O1 0.88 (2) 1.85 (2) 2.606 (2) 143.4 (18)
C13—H13···O2 0.93 2.30 2.869 (2) 119
C6—H6···Cg1ii 0.93 2.89 3.675 (2) 143

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2313).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Coupet, J., Rauh, C. E., Szues-Myers, V. A. & Yunger, L. M. (1979). Biochem. Pharmacol.28, 2514–2515. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Pae, C. U., Yu, H. S., Kim, J., Lee, C. U., Lee, S. J., Lee, K. U., Jun, T. Y., Paik, I. H., Serretti, A. & Lee, C. (2004). Neuropsychobiology, 49, 185–188. [DOI] [PubMed]
  8. Raza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042. [DOI] [PMC free article] [PubMed]
  9. Raza, A. R., Nisar, B. & Tahir, M. N. (2010a). Acta Cryst. E66, o1852. [DOI] [PMC free article] [PubMed]
  10. Raza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010b). Acta Cryst. E66, o2922. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045046/gk2313sup1.cif

e-66-o3100-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045046/gk2313Isup2.hkl

e-66-o3100-Isup2.hkl (137.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES