Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 20;66(Pt 12):o3229. doi: 10.1107/S1600536810046969

tert-Butyl 6-methyl-2-oxo-4-[4-(trifluoro­meth­oxy)anilino]cyclo­hex-3-ene-1-carboxyl­ate

Mariano S Alexander a, Henry North a, Kenneth R Scott a, Ray J Butcher b,*
PMCID: PMC3011753  PMID: 21589519

Abstract

In the title compound, C19H22F3NO4, the dihedral angle between the benzene ring and the conjugated part of the enaminone ring is 42.5 (1)°. The ester substituent makes a dihedral angle of 81.3 (2)° with this latter moiety. The crystal structure is held together by strong N—H⋯O and weak C—H⋯O inter­molecular inter­actions. The enaminone ring is disordered over two orientations with relative occupancies of 0.794 (4) and 0.206 (4).

Related literature

The title compound posseses significant anti­convulsant properties. For the anti­convulsant properties of enamino­nes, see: Edafiogho et al. (1992); Eddington et al. (2003); Scott et al. (1993, 1995).graphic file with name e-66-o3229-scheme1.jpg

Experimental

Crystal data

  • C19H22F3NO4

  • M r = 385.38

  • Monoclinic, Inline graphic

  • a = 13.7896 (3) Å

  • b = 12.0820 (2) Å

  • c = 11.0023 (2) Å

  • β = 91.1978 (18)°

  • V = 1832.65 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.01 mm−1

  • T = 123 K

  • 0.48 × 0.18 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.852, T max = 1.000

  • 7085 measured reflections

  • 3607 independent reflections

  • 3095 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.160

  • S = 1.06

  • 3607 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046969/hg2750sup1.cif

e-66-o3229-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046969/hg2750Isup2.hkl

e-66-o3229-Isup2.hkl (176.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 2.08 2.886 (2) 153
C2—H2A⋯O2i 0.95 2.58 3.333 (3) 136
C6—H6A⋯O3ii 0.95 2.55 3.385 (3) 147
C9B—H9BA⋯O3iii 0.99 2.44 3.40 (6) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are indebted to Mr James P. Stables, Epilepsy Branch, Division of Convulsive, Developmental and Neuromuscular Disorders, National Institute of Neurological Disorders and Stroke, for helpful discussions and initial data. The authors wish to acknowledge E. Jeannette Andrews, EdD, Deputy Director of the Center of Excellence at Howard University College of Pharmacy, Nursing and Allied Health Sciences, for her generous assistance in completing this project. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

Our research on enaminones has led to several compounds possessing anticonvulsant properties (Edafiogho et al., 1992; Eddington et al., 2003; Scott et al., 1993, 1995). The present work is part of a structural study of enaminones. Our group has extensively studied the effects of modification of the enaminone with substitutions at the methyl ester, ethyl ester, and without the ester group. We synthesized a series of carbo-tert-butoxy esters to evaluate the effect of added bulk and lipophilicity to the ester functionality. The title compound, tert-butyl-4-(4-trifluoromethoxyphenylamino)-6-methyl-2-oxocyclohex-3-en-1-oate (10) is highly active, with activity at <100 mg kg-1.

The compound was exclusively active in maximal electroshock seizure evaluation (MES) in mice, indicative of protection against tonic-clonic convulsions in humans (1/4 rats were protected at 15 min then 3/4 rats at 2 h and 4 hrs at post dose 50 mg kg-1 in rats, orally). The MES test with mice revealed no activity in the 30 minute study, however in the 4 h MES test 1/1 animals were protected at 30 mg kg-1, 3/3 animals protected at 100 mg kg-1, and 1/1 at 300 mg kg-1 with no toxicity. The scMET (subcutaneous phentylenetetrazole assessment), indicative of protection against absence seizures was 0/2 animals protected in doses of 62.5 to 500 mg kg-1. The compound displayed no toxicity from 62.5 to 500 mg kg-1 from 15 min to 24 h time range in all doses. A four hour MES test showed 4/16 mice protected at 100 mg kg-1 dose and maximium protection (7/8 mice protected) at 150 and 200 mg kg-1. In mice, a MES ED50 (median effective dose) of 121.87 mg kg-1 and TD50 (median toxic dose) of >500 mg kg-1, provided a protective index PI (defined as the ration of the median toxic dose to the median effective dose) at 95% confidence interval.

In view of the therapeutic interest in this compound its structure was determined. The conformation adopted by the molecule is such that the dihedral angle between the phenyl ring and conjugated part of the enaminone ring is 42.5 (1)°. The ester substituent makes a dihedral angle of 81.3 (2)° with this latter moiety. The crystal structure is held together by strong N—H···O and weak C—H···O intermolecular interactions. The enaminone ring is disordered over two conformations with relative occupancies of 0.794 (4)/0.206 (4).

Experimental

4-Carbo-t-butoxy-5-methylcyclohexane-1,3-dione (6.11 g, 27 mmol), mp 145–146°C (lit. mp 130–131.5°C), and 4-trifluoromethoxyaniline (4.428 ml g, 33 mmol) were added to a mixture of absolute EtOH (100 ml) and EtOAc (100 ml), and the solution was refluxed and stirred for 6 h with azeotropic removal of water by Dean-Stark trap. Evaporation under reduced pressure yielded a yellow solid which was recrystallized from 2-PrOH, 47% yield (mp 168–171°C). ).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 to 1.00 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to N were idealized with an N–H distance of 0.88 Å. The enaminone ring is disordered over two conformations with relative occupancies of 0.794 (4)/0.206 (4). Each component was constrained to have similar metrical and thermal parameters

Figures

Fig. 1.

Fig. 1.

Diagram of tert-butyl-4-(4-trifluoromethoxyphenylamino)-6-methyl-2-oxocyclohex-3-en-1-oate showing atom labeling scheme. Thermal ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing for tert-butyl-4-(4-trifluoromethoxyphenylamino)-6-methyl-2-oxocyclohex-3-en-1-oate viewed down the b axis. Intermolecular interactions are shown by dashed lines.

Crystal data

C19H22F3NO4 F(000) = 808
Mr = 385.38 Dx = 1.397 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 4437 reflections
a = 13.7896 (3) Å θ = 4.9–74.0°
b = 12.0820 (2) Å µ = 1.00 mm1
c = 11.0023 (2) Å T = 123 K
β = 91.1978 (18)° Needle plate, colorless
V = 1832.65 (6) Å3 0.48 × 0.18 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 3607 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3095 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 10.5081 pixels mm-1 θmax = 74.1°, θmin = 4.9°
ω scans h = −16→14
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −14→8
Tmin = 0.852, Tmax = 1.000 l = −13→13
7085 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0769P)2 + 1.5676P] where P = (Fo2 + 2Fc2)/3
3607 reflections (Δ/σ)max < 0.001
262 parameters Δρmax = 0.66 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.10734 (15) 0.64674 (16) 1.23883 (16) 0.0709 (6)
F2 0.04027 (13) 0.49236 (14) 1.20234 (15) 0.0589 (5)
F3 0.19525 (14) 0.5113 (2) 1.1945 (2) 0.0850 (7)
O1 0.09751 (12) 0.58259 (15) 1.05175 (15) 0.0420 (4)
O2 0.59047 (12) 0.50627 (12) 0.62115 (16) 0.0397 (4)
O3 0.66640 (13) 0.58950 (15) 0.36210 (19) 0.0490 (5)
O4 0.75913 (13) 0.67009 (14) 0.50910 (16) 0.0437 (4)
N1 0.38563 (13) 0.78606 (14) 0.78117 (17) 0.0301 (4)
H1A 0.3844 0.8587 0.7870 0.036*
C1 0.31707 (15) 0.72966 (17) 0.85070 (19) 0.0272 (4)
C2 0.28473 (16) 0.78157 (17) 0.95577 (19) 0.0305 (5)
H2A 0.3124 0.8503 0.9803 0.037*
C3 0.21290 (16) 0.73416 (19) 1.0246 (2) 0.0336 (5)
H3A 0.1906 0.7702 1.0955 0.040*
C4 0.17405 (15) 0.63344 (18) 0.9886 (2) 0.0310 (5)
C5 0.20450 (16) 0.58090 (18) 0.8851 (2) 0.0315 (5)
H5A 0.1766 0.5121 0.8615 0.038*
C6 0.27590 (15) 0.62856 (17) 0.81557 (19) 0.0295 (4)
H6A 0.2969 0.5926 0.7440 0.035*
C7 0.11132 (18) 0.5574 (2) 1.1683 (2) 0.0422 (6)
C8 0.45375 (14) 0.74432 (16) 0.70599 (18) 0.0262 (4)
C9A 0.5003 (12) 0.8322 (14) 0.6279 (13) 0.0279 (12) 0.794 (4)
H9AA 0.5105 0.8995 0.6778 0.033* 0.794 (4)
H9AB 0.4546 0.8515 0.5606 0.033* 0.794 (4)
C10A 0.5972 (2) 0.7986 (2) 0.5737 (3) 0.0267 (6) 0.794 (4)
H10A 0.6476 0.7949 0.6403 0.032* 0.794 (4)
C11A 0.58523 (18) 0.6829 (2) 0.5167 (2) 0.0256 (5) 0.794 (4)
H11A 0.5310 0.6865 0.4550 0.031* 0.794 (4)
C14A 0.6263 (10) 0.8853 (13) 0.4833 (13) 0.0344 (13) 0.794 (4)
H14A 0.6888 0.8651 0.4486 0.052* 0.794 (4)
H14B 0.6323 0.9571 0.5242 0.052* 0.794 (4)
H14C 0.5769 0.8901 0.4182 0.052* 0.794 (4)
C9B 0.505 (5) 0.834 (6) 0.641 (5) 0.0279 (12) 0.206 (4)
H9BA 0.5494 0.8727 0.6977 0.033* 0.206 (4)
H9BB 0.4569 0.8878 0.6086 0.033* 0.206 (4)
C10B 0.5616 (9) 0.7870 (10) 0.5372 (11) 0.0267 (6) 0.206 (4)
H10B 0.5148 0.7565 0.4752 0.032* 0.206 (4)
C11B 0.6240 (7) 0.6924 (8) 0.5856 (9) 0.0256 (5) 0.206 (4)
H11B 0.6718 0.7133 0.6513 0.031* 0.206 (4)
C14B 0.630 (4) 0.878 (5) 0.471 (6) 0.0344 (13) 0.206 (4)
H14D 0.6391 0.8572 0.3861 0.052* 0.206 (4)
H14E 0.6933 0.8818 0.5133 0.052* 0.206 (4)
H14F 0.5989 0.9513 0.4742 0.052* 0.206 (4)
C12 0.55529 (16) 0.60027 (17) 0.6181 (2) 0.0329 (5)
C13 0.48038 (15) 0.63603 (16) 0.69731 (19) 0.0281 (4)
H13A 0.4482 0.5826 0.7453 0.034*
C15 0.67459 (18) 0.64028 (19) 0.4539 (3) 0.0421 (6)
C16 0.85219 (18) 0.6464 (2) 0.4484 (2) 0.0421 (6)
C17 0.8520 (2) 0.6974 (2) 0.3218 (3) 0.0543 (7)
H17A 0.8062 0.6571 0.2687 0.081*
H17B 0.9172 0.6927 0.2886 0.081*
H17C 0.8323 0.7752 0.3267 0.081*
C18 0.9252 (3) 0.7032 (3) 0.5303 (4) 0.0734 (10)
H18A 0.9232 0.6706 0.6118 0.110*
H18B 0.9099 0.7823 0.5350 0.110*
H18C 0.9903 0.6937 0.4976 0.110*
C19 0.86786 (19) 0.5226 (2) 0.4465 (2) 0.0435 (6)
H19A 0.8613 0.4929 0.5288 0.065*
H19B 0.9330 0.5065 0.4173 0.065*
H19C 0.8195 0.4881 0.3921 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0923 (14) 0.0713 (12) 0.0501 (10) −0.0257 (10) 0.0258 (9) −0.0172 (9)
F2 0.0668 (10) 0.0592 (10) 0.0515 (9) −0.0206 (8) 0.0218 (8) 0.0063 (8)
F3 0.0611 (11) 0.1082 (17) 0.0865 (14) 0.0289 (11) 0.0204 (10) 0.0574 (13)
O1 0.0411 (9) 0.0485 (10) 0.0367 (9) −0.0135 (8) 0.0053 (7) 0.0018 (7)
O2 0.0395 (9) 0.0199 (7) 0.0601 (11) 0.0059 (6) 0.0104 (8) 0.0037 (7)
O3 0.0455 (10) 0.0339 (9) 0.0674 (12) 0.0013 (8) −0.0016 (9) −0.0065 (9)
O4 0.0535 (11) 0.0357 (9) 0.0425 (9) 0.0030 (8) 0.0121 (8) −0.0088 (7)
N1 0.0375 (10) 0.0172 (8) 0.0358 (9) 0.0011 (7) 0.0060 (7) −0.0013 (7)
C1 0.0280 (10) 0.0223 (9) 0.0315 (10) 0.0030 (8) 0.0007 (8) 0.0014 (8)
C2 0.0344 (11) 0.0230 (10) 0.0342 (11) −0.0017 (8) −0.0001 (9) −0.0034 (8)
C3 0.0378 (12) 0.0333 (11) 0.0299 (10) −0.0012 (9) 0.0034 (9) −0.0049 (9)
C4 0.0299 (10) 0.0315 (11) 0.0316 (10) −0.0039 (9) 0.0019 (8) 0.0039 (9)
C5 0.0331 (11) 0.0240 (10) 0.0372 (11) −0.0014 (8) −0.0021 (9) −0.0015 (8)
C6 0.0335 (11) 0.0249 (10) 0.0301 (10) 0.0012 (8) 0.0008 (8) −0.0031 (8)
C7 0.0416 (13) 0.0422 (13) 0.0432 (13) 0.0024 (11) 0.0114 (10) 0.0049 (11)
C8 0.0269 (10) 0.0222 (10) 0.0295 (10) −0.0001 (8) −0.0014 (8) −0.0007 (8)
C9A 0.0309 (19) 0.0166 (10) 0.036 (3) −0.0004 (13) 0.0004 (19) 0.000 (2)
C10A 0.0268 (16) 0.0212 (12) 0.0321 (16) −0.0029 (11) −0.0003 (11) −0.0011 (11)
C11A 0.0264 (13) 0.0200 (11) 0.0303 (13) −0.0010 (9) −0.0018 (9) −0.0006 (10)
C14A 0.0413 (17) 0.022 (2) 0.040 (3) −0.0023 (16) 0.009 (2) 0.0008 (19)
C9B 0.0309 (19) 0.0166 (10) 0.036 (3) −0.0004 (13) 0.0004 (19) 0.000 (2)
C10B 0.0268 (16) 0.0212 (12) 0.0321 (16) −0.0029 (11) −0.0003 (11) −0.0011 (11)
C11B 0.0264 (13) 0.0200 (11) 0.0303 (13) −0.0010 (9) −0.0018 (9) −0.0006 (10)
C14B 0.0413 (17) 0.022 (2) 0.040 (3) −0.0023 (16) 0.009 (2) 0.0008 (19)
C12 0.0289 (10) 0.0196 (10) 0.0503 (13) −0.0002 (8) 0.0050 (9) 0.0015 (9)
C13 0.0313 (10) 0.0191 (9) 0.0340 (10) −0.0007 (8) 0.0020 (8) 0.0017 (8)
C15 0.0382 (13) 0.0247 (11) 0.0641 (17) 0.0021 (9) 0.0184 (11) 0.0109 (11)
C16 0.0371 (13) 0.0393 (13) 0.0499 (14) 0.0003 (10) 0.0023 (10) −0.0053 (11)
C17 0.0510 (16) 0.0486 (15) 0.0641 (18) 0.0055 (13) 0.0220 (13) 0.0111 (13)
C18 0.064 (2) 0.0525 (18) 0.102 (3) −0.0054 (16) −0.0229 (19) −0.0140 (18)
C19 0.0424 (13) 0.0411 (13) 0.0470 (14) 0.0055 (11) 0.0003 (10) −0.0025 (11)

Geometric parameters (Å, °)

F1—C7 1.331 (3) C11A—C12 1.559 (3)
F2—C7 1.316 (3) C11A—H11A 1.0000
F3—C7 1.311 (3) C14A—H14A 0.9800
O1—C7 1.328 (3) C14A—H14B 0.9800
O1—C4 1.416 (3) C14A—H14C 0.9800
O2—C12 1.235 (3) C9B—C10B 1.50 (7)
O3—C15 1.185 (3) C9B—H9BA 0.9900
O4—C15 1.352 (3) C9B—H9BB 0.9900
O4—C16 1.487 (3) C10B—C11B 1.520 (15)
N1—C8 1.361 (3) C10B—C14B 1.63 (7)
N1—C1 1.405 (3) C10B—H10B 1.0000
N1—H1A 0.8800 C11B—C12 1.510 (10)
C1—C2 1.396 (3) C11B—C15 1.740 (10)
C1—C6 1.398 (3) C11B—H11B 1.0000
C2—C3 1.384 (3) C14B—H14D 0.9800
C2—H2A 0.9500 C14B—H14E 0.9800
C3—C4 1.384 (3) C14B—H14F 0.9800
C3—H3A 0.9500 C12—C13 1.432 (3)
C4—C5 1.377 (3) C13—H13A 0.9500
C5—C6 1.385 (3) C16—C18 1.503 (4)
C5—H5A 0.9500 C16—C19 1.512 (3)
C6—H6A 0.9500 C16—C17 1.523 (4)
C8—C13 1.363 (3) C17—H17A 0.9800
C8—C9B 1.48 (7) C17—H17B 0.9800
C8—C9A 1.516 (18) C17—H17C 0.9800
C9A—C10A 1.530 (17) C18—H18A 0.9800
C9A—H9AA 0.9900 C18—H18B 0.9800
C9A—H9AB 0.9900 C18—H18C 0.9800
C10A—C14A 1.504 (17) C19—H19A 0.9800
C10A—C11A 1.540 (4) C19—H19B 0.9800
C10A—H10A 1.0000 C19—H19C 0.9800
C11A—C15 1.515 (3)
C7—O1—C4 118.68 (19) H9BA—C9B—H9BB 108.1
C15—O4—C16 119.42 (19) C9B—C10B—C11B 108 (2)
C8—N1—C1 129.19 (17) C9B—C10B—C14B 113 (4)
C8—N1—H1A 115.4 C11B—C10B—C14B 110 (2)
C1—N1—H1A 115.4 C9B—C10B—H10B 108.4
C2—C1—C6 119.10 (19) C11B—C10B—H10B 108.4
C2—C1—N1 117.59 (18) C14B—C10B—H10B 108.4
C6—C1—N1 123.18 (19) C12—C11B—C10B 106.5 (8)
C3—C2—C1 120.8 (2) C12—C11B—C15 101.2 (6)
C3—C2—H2A 119.6 C10B—C11B—C15 102.4 (8)
C1—C2—H2A 119.6 C12—C11B—H11B 115.0
C2—C3—C4 119.0 (2) C10B—C11B—H11B 115.0
C2—C3—H3A 120.5 C15—C11B—H11B 115.0
C4—C3—H3A 120.5 C10B—C14B—H14D 109.5
C5—C4—C3 121.3 (2) C10B—C14B—H14E 109.5
C5—C4—O1 116.67 (19) H14D—C14B—H14E 109.5
C3—C4—O1 122.0 (2) C10B—C14B—H14F 109.5
C4—C5—C6 119.9 (2) H14D—C14B—H14F 109.5
C4—C5—H5A 120.1 H14E—C14B—H14F 109.5
C6—C5—H5A 120.1 O2—C12—C13 123.3 (2)
C5—C6—C1 120.0 (2) O2—C12—C11B 115.9 (4)
C5—C6—H6A 120.0 C13—C12—C11B 112.7 (4)
C1—C6—H6A 120.0 O2—C12—C11A 119.9 (2)
F3—C7—F2 110.1 (2) C13—C12—C11A 116.59 (18)
F3—C7—O1 114.7 (2) C11B—C12—C11A 35.1 (4)
F2—C7—O1 108.6 (2) C8—C13—C12 122.08 (19)
F3—C7—F1 105.3 (3) C8—C13—H13A 119.0
F2—C7—F1 106.2 (2) C12—C13—H13A 119.0
O1—C7—F1 111.7 (2) O3—C15—O4 125.9 (2)
N1—C8—C13 126.06 (19) O3—C15—C11A 120.0 (2)
N1—C8—C9B 111 (2) O4—C15—C11A 114.0 (2)
C13—C8—C9B 122 (2) O3—C15—C11B 149.8 (4)
N1—C8—C9A 113.0 (6) O4—C15—C11B 83.5 (4)
C13—C8—C9A 121.0 (6) C11A—C15—C11B 32.1 (3)
C9B—C8—C9A 6(3) O4—C16—C18 102.5 (2)
C8—C9A—C10A 114.8 (10) O4—C16—C19 108.8 (2)
C8—C9A—H9AA 108.6 C18—C16—C19 111.5 (2)
C10A—C9A—H9AA 108.6 O4—C16—C17 110.3 (2)
C8—C9A—H9AB 108.6 C18—C16—C17 110.6 (3)
C10A—C9A—H9AB 108.6 C19—C16—C17 112.6 (2)
H9AA—C9A—H9AB 107.5 C16—C17—H17A 109.5
C14A—C10A—C9A 108.7 (8) C16—C17—H17B 109.5
C14A—C10A—C11A 113.0 (5) H17A—C17—H17B 109.5
C9A—C10A—C11A 108.2 (7) C16—C17—H17C 109.5
C14A—C10A—H10A 108.9 H17A—C17—H17C 109.5
C9A—C10A—H10A 108.9 H17B—C17—H17C 109.5
C11A—C10A—H10A 108.9 C16—C18—H18A 109.5
C15—C11A—C10A 114.4 (2) C16—C18—H18B 109.5
C15—C11A—C12 109.83 (19) H18A—C18—H18B 109.5
C10A—C11A—C12 108.5 (2) C16—C18—H18C 109.5
C15—C11A—H11A 108.0 H18A—C18—H18C 109.5
C10A—C11A—H11A 108.0 H18B—C18—H18C 109.5
C12—C11A—H11A 108.0 C16—C19—H19A 109.5
C8—C9B—C10B 111 (4) C16—C19—H19B 109.5
C8—C9B—H9BA 109.5 H19A—C19—H19B 109.5
C10B—C9B—H9BA 109.5 C16—C19—H19C 109.5
C8—C9B—H9BB 109.5 H19A—C19—H19C 109.5
C10B—C9B—H9BB 109.5 H19B—C19—H19C 109.5
C8—N1—C1—C2 153.2 (2) C14B—C10B—C11B—C15 −61 (2)
C8—N1—C1—C6 −31.0 (3) C10B—C11B—C12—O2 157.3 (6)
C6—C1—C2—C3 0.0 (3) C15—C11B—C12—O2 50.7 (6)
N1—C1—C2—C3 176.0 (2) C10B—C11B—C12—C13 −52.9 (8)
C1—C2—C3—C4 0.7 (3) C15—C11B—C12—C13 −159.6 (3)
C2—C3—C4—C5 −1.0 (3) C10B—C11B—C12—C11A 51.5 (7)
C2—C3—C4—O1 −177.2 (2) C15—C11B—C12—C11A −55.2 (5)
C7—O1—C4—C5 123.9 (2) C15—C11A—C12—O2 −14.0 (3)
C7—O1—C4—C3 −59.7 (3) C10A—C11A—C12—O2 −139.7 (2)
C3—C4—C5—C6 0.5 (3) C15—C11A—C12—C13 171.5 (2)
O1—C4—C5—C6 176.93 (19) C10A—C11A—C12—C13 45.8 (3)
C4—C5—C6—C1 0.2 (3) C15—C11A—C12—C11B 79.3 (7)
C2—C1—C6—C5 −0.4 (3) C10A—C11A—C12—C11B −46.4 (7)
N1—C1—C6—C5 −176.20 (19) N1—C8—C13—C12 −177.9 (2)
C4—O1—C7—F3 −44.1 (3) C9B—C8—C13—C12 −4(3)
C4—O1—C7—F2 −167.7 (2) C9A—C8—C13—C12 2.3 (7)
C4—O1—C7—F1 75.5 (3) O2—C12—C13—C8 169.1 (2)
C1—N1—C8—C13 −11.5 (4) C11B—C12—C13—C8 22.0 (5)
C1—N1—C8—C9B 174 (2) C11A—C12—C13—C8 −16.5 (3)
C1—N1—C8—C9A 168.4 (6) C16—O4—C15—O3 4.9 (4)
N1—C8—C9A—C10A 161.2 (6) C16—O4—C15—C11A −172.1 (2)
C13—C8—C9A—C10A −19.0 (11) C16—O4—C15—C11B 177.6 (4)
C9B—C8—C9A—C10A 85 (30) C10A—C11A—C15—O3 −141.6 (2)
C8—C9A—C10A—C14A 170.9 (8) C12—C11A—C15—O3 96.1 (3)
C8—C9A—C10A—C11A 47.8 (9) C10A—C11A—C15—O4 35.6 (3)
C14A—C10A—C11A—C15 56.9 (7) C12—C11A—C15—O4 −86.7 (2)
C9A—C10A—C11A—C15 177.4 (6) C10A—C11A—C15—C11B 55.1 (6)
C14A—C10A—C11A—C12 179.9 (6) C12—C11A—C15—C11B −67.2 (6)
C9A—C10A—C11A—C12 −59.6 (6) C12—C11B—C15—O3 36.2 (11)
N1—C8—C9B—C10B −166 (2) C10B—C11B—C15—O3 −73.7 (10)
C13—C8—C9B—C10B 19 (4) C12—C11B—C15—O4 −132.0 (5)
C9A—C8—C9B—C10B −60 (28) C10B—C11B—C15—O4 118.2 (7)
C8—C9B—C10B—C11B −51 (4) C12—C11B—C15—C11A 65.9 (6)
C8—C9B—C10B—C14B −173 (3) C10B—C11B—C15—C11A −44.0 (6)
C9B—C10B—C11B—C12 69 (3) C15—O4—C16—C18 173.6 (2)
C14B—C10B—C11B—C12 −167 (2) C15—O4—C16—C19 −68.2 (3)
C9B—C10B—C11B—C15 174 (3) C15—O4—C16—C17 55.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.88 2.08 2.886 (2) 153
C2—H2A···O2i 0.95 2.58 3.333 (3) 136
C6—H6A···O3ii 0.95 2.55 3.385 (3) 147
C9B—H9BA···O3iii 0.99 2.44 3.40 (6) 162

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2750).

References

  1. Edafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem.35, 2798–2805. [DOI] [PubMed]
  2. Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem.38, 49–64. [DOI] [PubMed]
  3. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  4. Scott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem.36, 1947–1955. [DOI] [PubMed]
  5. Scott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). J. Med. Chem.38, 4033–4043. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046969/hg2750sup1.cif

e-66-o3229-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046969/hg2750Isup2.hkl

e-66-o3229-Isup2.hkl (176.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES