Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 30;66(Pt 12):o3356. doi: 10.1107/S1600536810043709

A functionalized enol lactone containing a protected α-amino acid

Giuseppe Bruno a, Francesco Nicoló a,*, Massimiliano Cordaro b, Giovanni Grassi b, Francesco Risitano b
PMCID: PMC3011768  PMID: 21589625

Abstract

The crystal structure of N-(3,9-dimethyl-4-phenyl-2,5-dioxo-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-3-yl)-N-methylbenzamide methanol monosolvate, C28H23NO5·CH3OH, has been determined at room temperature by X-ray diffraction. Structural parameters are discussed with reference to ab initio calculations.

Related literature

For structures containing enol lactone fragments, see: Murray et al. (1982); Harborne & Baxter (1999); Qabaja et al. (2000). For related structures containing a coumarin fragment, see: Yu et al. (2003). For a phenyl­furo[3,2-c]chromen-4-one structure, see: Bruno et al. (2001). For related furan-5-one structures, see: Grassi et al. (2002). For the Cambridge Structural Database, see: Allen (2002). For the GAUSSIAN98 software used for the ab initio calculations, see: Frisch et al. (1998). For the synthetic process used, see: Grassi et al. (2003). For background to O—C—O bond-angle asymmetry, see: Kokila et al. (1996).graphic file with name e-66-o3356-scheme1.jpg

Experimental

Crystal data

  • C28H23NO5·CH4O

  • M r = 485.52

  • Monoclinic, Inline graphic

  • a = 10.7435 (14) Å

  • b = 9.9056 (17) Å

  • c = 23.298 (3) Å

  • β = 94.817 (7)°

  • V = 2470.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.58 × 0.38 × 0.36 mm

Data collection

  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (Kopfmann & Huber, 1968) T min = 0.870, T max = 0.968

  • 9535 measured reflections

  • 4347 independent reflections

  • 2843 reflections with I > 2σ(I)

  • R int = 0.036

  • 3 standard reflections every 197 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.132

  • S = 1.01

  • 4347 reflections

  • 331 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: PARST97 (Nardelli, 1995) and SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043709/jh2217sup1.cif

e-66-o3356-sup1.cif (26.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043709/jh2217Isup2.hkl

e-66-o3356-Isup2.hkl (208.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O35—H35⋯O27 0.82 1.99 2.784 (3) 163
C9—H9⋯O35i 0.93 2.46 3.320 (4) 153
C19—H19⋯O11ii 0.93 2.60 3.403 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Highly functionalized enol lactones constitute an attractive class of compounds not only because of their molecular architecture but also because of the interesting biopharmacological activity often shown by compounds possessing this subunit in their molecular skeleton (Murray et al., 1982; Harborne & Baxter, 1999; Qabaja et al., 2000).

The molecule 3 is mainly constituted by a cumarine system which is further [3,2-c]-fused with a 3,4-dihydro-pyran-2-one ring carrying at posistion 3 a methyl and a methyllbenzamide group while a phenyl moiety is placed at 4. Then these C atoms at 3 and 4 are chiral centers showing the same configuration. Due to the P21/n centric space group, both the S,R and R,S diastereomers are present in the solid state and the crystals represent a perfect racemic mixture. The methyl cumarin fragment is planar within experimental error; bonds distances and angles of this moiety are in good agreement with the corresponding values reported for such fragments (Yu et al., 2003). The methylbenzamide fragment is not planar and shows the usual bond geometry values: the phenyl ring is rotated by 60.9 (3)° with respect to the amide moiety. The three carbonyl groups have very different C═O bond distances and their O atoms are involved in several intra- and intermolecular hydrogen interactions. The significant elongation of C(26)—O(27) bond might be related to the strongest hydrogen interaction of its O atom with the co-crystallized methanol molecule: O(27)···H(35) and O(27)···O(35) are 1.99 and 2.784 (3) Å, respectively, while O(35)—H(35)···O(27) is 163°. The sum of the valence angles around N(24) is 357.7 (2)° and evidences the not significant pyramidalization of the nitrogen. Therefore the nitrogen geometry appears planar and might be related to its sp2 hybridization caused by the delocalization of its lone-pair over the carbonyl fragments as also suggested by the length of the bonds involving the N(24) atom. Phenyl group bonded to C(26) is rotated with respect to this system (the N(24)—C(26)—C(28)—C(29) torsion angle is 60.5 (3)°) and does not participate to the possible π-electronic delocalization as evidenced by the C(28)—C(26) single-bond length value [1.491 (3) Å]. In the crystal lattice, each pair of molecules related by an inversion centre shows a π-interaction of 3.4 (1) Å between their planar furo[3,2-c]coumarin fragments. The substituent phenyl rings, despite their out-of-plane rotation, are directed far from the flat central molecular bulk and do not obstacle the strong π-stacking in the formation of the centrosymmetric couple, remaing at its surface as the co-crystallized methanol. Therefore crystal packing is constituted by dimeric units interconnected by several weak hydrogen bonds involving the O atoms.

Here, as well as already found in the phenyl-furo[3,2-c]chromen-4-one (Bruno et al., 2001) and in other related coumarin compounds reported in the October 2004 (Version 5.27) release of CSD (Allen, 2002), an important asymmetry in the O—C—O bond angles has been detected [β = O(1)—C(2)—O(11), 117.4 (2)° and α = C(3)—C(2)—O(11), 125.1 (2)°] Δ(α-β) = 7.7 (2)°. Even more similar significant differences have been observed in other molecules containing the furan-5-one fragment, as we have already reported (Grassi et al., 2002).

Ab initio and DFT calculations on some models have been performed in order to clarify the relevant observed asymmetry in the O—C—O bond angles of the cumarinic fragment. From these results we can conclude that the observed and calculated carbonyl distortion arises exclusively from electronic rather than steric factors. However further statistical and theoretical study are necessary to better clarify the real nature of this asymmetry.

Experimental

Fig. 2.

We recently described a novel kind of cyclo-condensation process that converts two equivalents of a münchnone and a 1,3-dicarbonyl compound into a functionalized enol lactone containing a protected α-amino acid (Grassi et al., 2003). Here we report structural characterization of the enol lactone 3 synthesized by 4,5-dimethyl-2-phenyl-1,3-oxazolium-5-late (DMPO) 2 and 4-hydroxy-6-methylcoumarin 1 (an unsymmetrical enolisable dicarbonyl substrate). Single crystals of 3 suitable for X-ray analysis were obtained by slow evaporation from a methanole solution.

In trying to get some insight regarding this important asymmetry in the O—C—O bond angle of the cumarinic fragment an ab initio and DFT calculations on some model compounds, such as the bicyclic 3,4-dyhidro-pyrano[4,3-b]pyran-2,5-dione, a series of 3-substituted pyran-2-one, the cumarine and 3-methyl-cumarine, were performed by using the basis set 6-31+G(d,p) in GAUSSIAN98 (Frisch et al., 1998). At all level of calculations this controversial asymmetry (Kokila et al., 1996) around carbonilic C atom is consistent with the X-ray structural observations.

Refinement

A suitable colourless single-crystal was mounted on a capillary glass fiber. The intensity data were collected at room temperature up to 2θ = 50° by using the ω-2θ scan technique with variable scan speed on a Siemens P4 4-cirlce diffractometer with graphite monochromated Mo Kα radiation. Lattice parameters were obtained from least-squares refinement of the setting angles of 59 reflections with 14 < 2θ < 35°. Intensities were corrected for Lonrentz polarization and then for absorption effetcts. No crystal deterioration was revealed during irradiation. The structure, solved by standard Direct Methods, was completed and refined by a combination of least squares technique and Fourier Syntheses. Whereas several H atoms were located on final ΔF map, the H atoms were included in the refinement among the "riding model" method with the X—H bond geometry and the H isotropic displacement parameter depending on the parent atom X. The refinement, with all non H atoms anisotropic and carried out by the full matrix least-square technique, has included a parameter for extinction correction. The last difference Fourier map showed no significant density residuals. One terminal methyl (C16) appeared to be affected by a significant rotational disorder and its H's group has to be split over two symmetric positions with equal occupancy 0.5; the disorder of the methanol molecule causes its large thermal ellipsoids.

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit with numbering scheme of compound 3. Dashed line represents H-bond with the co-crystallized methanol hydrogen. Ellipsoids are drawn at 20% of probability level while hydrogen size is arbitrary.

Fig. 2.

Fig. 2.

Reaction scheme.

Crystal data

C28H23NO5·CH4O F(000) = 1024
Mr = 485.52 Dx = 1.305 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 59 reflections
a = 10.7435 (14) Å θ = 7.7–17.5°
b = 9.9056 (17) Å µ = 0.09 mm1
c = 23.298 (3) Å T = 298 K
β = 94.817 (7)° Irregular, colourless
V = 2470.7 (6) Å3 0.58 × 0.38 × 0.36 mm
Z = 4

Data collection

Siemens P4 diffractometer 2843 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.036
graphite θmax = 25.0°, θmin = 2.0°
ω scans h = −12→12
Absorption correction: ψ scan (Kopfmann & Huber, 1968) k = −1→11
Tmin = 0.870, Tmax = 0.968 l = −27→27
9535 measured reflections 3 standard reflections every 197 reflections
4347 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.7913P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
4347 reflections Δρmax = 0.18 e Å3
331 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0036 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.50718 (15) 0.77955 (19) 0.49310 (6) 0.0560 (5)
C2 0.6021 (2) 0.8610 (3) 0.51636 (10) 0.0490 (6)
C3 0.64762 (19) 0.8378 (2) 0.57594 (9) 0.0440 (6)
C4 0.5962 (2) 0.7392 (2) 0.60580 (9) 0.0456 (6)
C5 0.4958 (2) 0.6556 (3) 0.58143 (10) 0.0483 (6)
C6 0.4409 (2) 0.5503 (3) 0.61028 (12) 0.0588 (7)
H6 0.4684 0.5327 0.6485 0.071*
C7 0.3471 (2) 0.4720 (3) 0.58354 (14) 0.0675 (8)
C8 0.3087 (2) 0.5014 (3) 0.52619 (15) 0.0735 (9)
H8 0.2451 0.4500 0.5075 0.088*
C9 0.3612 (2) 0.6034 (3) 0.49630 (12) 0.0655 (8)
H9 0.3340 0.6203 0.4580 0.079*
C10 0.4550 (2) 0.6802 (3) 0.52418 (10) 0.0512 (6)
O11 0.64195 (16) 0.9454 (2) 0.48534 (7) 0.0649 (5)
C12 0.75139 (19) 0.9241 (3) 0.60261 (9) 0.0442 (6)
H12 0.7380 1.0154 0.5872 0.053*
C13 0.7374 (2) 0.9318 (3) 0.66888 (9) 0.0447 (6)
C14 0.7351 (2) 0.7859 (3) 0.68848 (9) 0.0491 (6)
O15 0.64021 (15) 0.70590 (17) 0.66098 (6) 0.0538 (4)
C16 0.2891 (3) 0.3579 (3) 0.61477 (16) 0.0964 (11)
H16A 0.2461 0.2984 0.5873 0.145* 0.50
H16B 0.2310 0.3938 0.6399 0.145* 0.50
H16C 0.3533 0.3087 0.6370 0.145* 0.50
H16D 0.3075 0.3689 0.6555 0.145* 0.50
H16E 0.3226 0.2735 0.6029 0.145* 0.50
H16F 0.2003 0.3585 0.6058 0.145* 0.50
C17 0.8802 (2) 0.8790 (3) 0.58752 (9) 0.0493 (6)
C18 0.9676 (2) 0.9762 (3) 0.57662 (11) 0.0684 (8)
H18 0.9468 1.0670 0.5789 0.082*
C19 1.0865 (3) 0.9398 (4) 0.56224 (12) 0.0835 (10)
H19 1.1443 1.0064 0.5552 0.100*
C20 1.1177 (3) 0.8095 (5) 0.55848 (13) 0.0848 (11)
H20 1.1971 0.7857 0.5490 0.102*
C21 1.0328 (3) 0.7111 (4) 0.56862 (13) 0.0832 (10)
H21 1.0546 0.6207 0.5658 0.100*
C22 0.9136 (2) 0.7461 (3) 0.58313 (11) 0.0633 (7)
H22 0.8563 0.6787 0.5899 0.076*
C23 0.8437 (2) 1.0061 (3) 0.70278 (10) 0.0583 (7)
H23A 0.8475 1.0973 0.6891 0.087*
H23B 0.9212 0.9613 0.6977 0.087*
H23C 0.8294 1.0067 0.7429 0.087*
N24 0.61573 (15) 0.9977 (2) 0.67699 (7) 0.0444 (5)
C25 0.5853 (2) 1.1225 (3) 0.64515 (11) 0.0613 (7)
H25A 0.6605 1.1728 0.6412 0.092*
H25B 0.5290 1.1756 0.6657 0.092*
H25C 0.5467 1.1007 0.6076 0.092*
C26 0.5548 (2) 0.9634 (3) 0.72315 (10) 0.0490 (6)
O27 0.59794 (16) 0.8770 (2) 0.75754 (7) 0.0659 (5)
C28 0.4305 (2) 1.0259 (3) 0.73030 (10) 0.0502 (6)
C29 0.3308 (2) 1.0086 (3) 0.68954 (12) 0.0716 (8)
H29 0.3414 0.9615 0.6558 0.086*
C30 0.2151 (2) 1.0614 (4) 0.69901 (14) 0.0843 (10)
H30 0.1477 1.0472 0.6719 0.101*
C31 0.1984 (3) 1.1333 (4) 0.74701 (14) 0.0807 (9)
H31 0.1206 1.1700 0.7526 0.097*
C32 0.2965 (3) 1.1516 (4) 0.78720 (13) 0.0806 (9)
H32 0.2856 1.2013 0.8203 0.097*
C33 0.4116 (2) 1.0973 (3) 0.77930 (11) 0.0657 (8)
H33 0.4773 1.1091 0.8075 0.079*
O34 0.81109 (15) 0.7302 (2) 0.72014 (7) 0.0637 (5)
C34 0.5741 (5) 0.8527 (5) 0.8947 (2) 0.1397 (17)
H34A 0.5325 0.7866 0.8698 0.210*
H34B 0.5214 0.9305 0.8969 0.210*
H34C 0.5915 0.8150 0.9325 0.210*
O35 0.6784 (3) 0.8881 (7) 0.87417 (13) 0.208 (2)
H35 0.6675 0.8947 0.8390 0.312*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0512 (9) 0.0702 (12) 0.0453 (9) 0.0038 (9) −0.0040 (7) −0.0002 (9)
C2 0.0414 (12) 0.0628 (17) 0.0433 (12) 0.0088 (12) 0.0060 (10) −0.0008 (13)
C3 0.0388 (11) 0.0561 (15) 0.0378 (11) 0.0061 (11) 0.0068 (9) 0.0007 (11)
C4 0.0450 (12) 0.0535 (15) 0.0383 (11) 0.0068 (12) 0.0044 (9) −0.0019 (11)
C5 0.0400 (12) 0.0528 (15) 0.0533 (14) 0.0048 (11) 0.0110 (10) −0.0051 (12)
C6 0.0509 (14) 0.0589 (17) 0.0680 (16) 0.0005 (13) 0.0135 (12) −0.0055 (14)
C7 0.0489 (15) 0.0576 (18) 0.099 (2) −0.0006 (14) 0.0214 (15) −0.0127 (17)
C8 0.0433 (14) 0.074 (2) 0.102 (2) −0.0026 (15) 0.0015 (15) −0.0291 (19)
C9 0.0494 (15) 0.076 (2) 0.0696 (17) 0.0070 (15) −0.0045 (13) −0.0197 (16)
C10 0.0397 (12) 0.0585 (17) 0.0553 (14) 0.0072 (12) 0.0041 (11) −0.0069 (13)
O11 0.0640 (11) 0.0864 (14) 0.0446 (9) −0.0029 (10) 0.0072 (8) 0.0148 (10)
C12 0.0405 (12) 0.0535 (15) 0.0390 (11) 0.0011 (11) 0.0058 (9) 0.0027 (11)
C13 0.0387 (12) 0.0575 (16) 0.0382 (11) 0.0040 (11) 0.0043 (9) −0.0002 (11)
C14 0.0447 (12) 0.0655 (17) 0.0373 (11) 0.0055 (13) 0.0060 (10) 0.0006 (12)
O15 0.0619 (10) 0.0573 (11) 0.0417 (8) −0.0035 (9) 0.0011 (7) 0.0069 (8)
C16 0.076 (2) 0.076 (2) 0.141 (3) −0.0171 (18) 0.029 (2) −0.003 (2)
C17 0.0421 (12) 0.0686 (18) 0.0378 (12) −0.0006 (13) 0.0079 (10) −0.0013 (12)
C18 0.0584 (16) 0.086 (2) 0.0632 (16) −0.0079 (16) 0.0182 (13) −0.0048 (16)
C19 0.0550 (17) 0.129 (3) 0.0698 (19) −0.015 (2) 0.0224 (14) −0.009 (2)
C20 0.0500 (16) 0.138 (3) 0.0687 (19) 0.014 (2) 0.0170 (14) −0.014 (2)
C21 0.0671 (19) 0.103 (3) 0.081 (2) 0.027 (2) 0.0170 (16) −0.0044 (19)
C22 0.0546 (15) 0.073 (2) 0.0631 (16) 0.0080 (15) 0.0110 (12) −0.0009 (14)
C23 0.0463 (13) 0.0765 (19) 0.0518 (13) −0.0025 (14) 0.0015 (11) −0.0070 (14)
N24 0.0397 (10) 0.0542 (12) 0.0397 (9) 0.0036 (9) 0.0068 (8) 0.0038 (9)
C25 0.0583 (15) 0.0686 (19) 0.0586 (15) 0.0116 (14) 0.0158 (12) 0.0123 (14)
C26 0.0455 (13) 0.0591 (16) 0.0427 (12) 0.0009 (12) 0.0049 (10) −0.0023 (12)
O27 0.0669 (11) 0.0826 (14) 0.0501 (10) 0.0178 (11) 0.0156 (8) 0.0156 (10)
C28 0.0417 (12) 0.0607 (16) 0.0490 (13) −0.0030 (12) 0.0091 (10) 0.0024 (12)
C29 0.0502 (15) 0.100 (2) 0.0642 (16) −0.0008 (16) 0.0047 (12) −0.0214 (17)
C30 0.0403 (15) 0.128 (3) 0.084 (2) −0.0023 (17) −0.0005 (14) −0.011 (2)
C31 0.0505 (16) 0.113 (3) 0.081 (2) 0.0139 (17) 0.0204 (15) −0.002 (2)
C32 0.0637 (18) 0.107 (3) 0.0732 (19) 0.0124 (18) 0.0176 (15) −0.0207 (18)
C33 0.0503 (14) 0.091 (2) 0.0564 (15) 0.0016 (15) 0.0070 (12) −0.0154 (15)
O34 0.0554 (10) 0.0799 (13) 0.0549 (10) 0.0163 (10) −0.0014 (8) 0.0164 (10)
C34 0.159 (4) 0.135 (4) 0.128 (4) 0.009 (4) 0.024 (3) 0.029 (3)
O35 0.140 (3) 0.398 (7) 0.0822 (19) 0.048 (4) −0.0186 (19) 0.013 (3)

Geometric parameters (Å, °)

O1—C10 1.369 (3) C18—H18 0.9300
O1—C2 1.376 (3) C19—C20 1.339 (5)
C2—O11 1.206 (3) C19—H19 0.9300
C2—C3 1.451 (3) C20—C21 1.369 (5)
C3—C4 1.344 (3) C20—H20 0.9300
C3—C12 1.498 (3) C21—C22 1.395 (4)
C4—O15 1.372 (3) C21—H21 0.9300
C4—C5 1.438 (3) C22—H22 0.9300
C5—C10 1.390 (3) C23—H23A 0.9600
C5—C6 1.398 (3) C23—H23B 0.9600
C6—C7 1.379 (4) C23—H23C 0.9600
C6—H6 0.9300 N24—C26 1.349 (3)
C7—C8 1.396 (4) N24—C25 1.464 (3)
C7—C16 1.507 (4) C25—H25A 0.9600
C8—C9 1.375 (4) C25—H25B 0.9600
C8—H8 0.9300 C25—H25C 0.9600
C9—C10 1.381 (4) C26—O27 1.236 (3)
C9—H9 0.9300 C26—C28 1.493 (3)
C12—C17 1.524 (3) C28—C33 1.373 (3)
C12—C13 1.566 (3) C28—C29 1.382 (3)
C12—H12 0.9800 C29—C30 1.383 (4)
C13—N24 1.488 (3) C29—H29 0.9300
C13—C14 1.516 (4) C30—C31 1.351 (4)
C13—C23 1.523 (3) C30—H30 0.9300
C14—O34 1.189 (3) C31—C32 1.362 (4)
C14—O15 1.403 (3) C31—H31 0.9300
C16—H16A 0.9600 C32—C33 1.374 (4)
C16—H16B 0.9600 C32—H32 0.9300
C16—H16C 0.9600 C33—H33 0.9300
C16—H16D 0.9600 C34—O35 1.302 (5)
C16—H16E 0.9600 C34—H34A 0.9600
C16—H16F 0.9600 C34—H34B 0.9600
C17—C22 1.371 (4) C34—H34C 0.9600
C17—C18 1.382 (4) O35—H35 0.8200
C18—C19 1.395 (4)
C10—O1—C2 122.43 (19) H16D—C16—H16F 109.5
O11—C2—O1 117.3 (2) H16E—C16—H16F 109.5
O11—C2—C3 125.1 (2) C22—C17—C18 118.0 (2)
O1—C2—C3 117.6 (2) C22—C17—C12 123.1 (2)
C4—C3—C2 119.4 (2) C18—C17—C12 118.8 (2)
C4—C3—C12 121.6 (2) C17—C18—C19 120.9 (3)
C2—C3—C12 119.0 (2) C17—C18—H18 119.5
C3—C4—O15 122.4 (2) C19—C18—H18 119.5
C3—C4—C5 122.8 (2) C20—C19—C18 120.3 (3)
O15—C4—C5 114.8 (2) C20—C19—H19 119.9
C10—C5—C6 118.7 (2) C18—C19—H19 119.9
C10—C5—C4 116.3 (2) C19—C20—C21 120.1 (3)
C6—C5—C4 124.9 (2) C19—C20—H20 120.0
C7—C6—C5 121.6 (3) C21—C20—H20 120.0
C7—C6—H6 119.2 C20—C21—C22 120.3 (3)
C5—C6—H6 119.2 C20—C21—H21 119.9
C6—C7—C8 117.5 (3) C22—C21—H21 119.9
C6—C7—C16 121.4 (3) C17—C22—C21 120.5 (3)
C8—C7—C16 121.2 (3) C17—C22—H22 119.8
C9—C8—C7 122.5 (3) C21—C22—H22 119.8
C9—C8—H8 118.8 C13—C23—H23A 109.5
C7—C8—H8 118.8 C13—C23—H23B 109.5
C8—C9—C10 118.8 (3) H23A—C23—H23B 109.5
C8—C9—H9 120.6 C13—C23—H23C 109.5
C10—C9—H9 120.6 H23A—C23—H23C 109.5
O1—C10—C9 117.6 (2) H23B—C23—H23C 109.5
O1—C10—C5 121.5 (2) C26—N24—C25 121.0 (2)
C9—C10—C5 120.9 (3) C26—N24—C13 118.76 (19)
C3—C12—C17 113.34 (19) C25—N24—C13 117.86 (18)
C3—C12—C13 107.90 (17) N24—C25—H25A 109.5
C17—C12—C13 113.96 (17) N24—C25—H25B 109.5
C3—C12—H12 107.1 H25A—C25—H25B 109.5
C17—C12—H12 107.1 N24—C25—H25C 109.5
C13—C12—H12 107.1 H25A—C25—H25C 109.5
N24—C13—C14 110.10 (18) H25B—C25—H25C 109.5
N24—C13—C23 110.53 (19) O27—C26—N24 120.7 (2)
C14—C13—C23 109.6 (2) O27—C26—C28 120.3 (2)
N24—C13—C12 107.74 (16) N24—C26—C28 118.9 (2)
C14—C13—C12 104.82 (19) C33—C28—C29 118.3 (2)
C23—C13—C12 113.90 (18) C33—C28—C26 120.2 (2)
O34—C14—O15 117.1 (2) C29—C28—C26 121.4 (2)
O34—C14—C13 127.0 (2) C28—C29—C30 119.9 (3)
O15—C14—C13 115.49 (19) C28—C29—H29 120.0
C4—O15—C14 118.16 (18) C30—C29—H29 120.0
C7—C16—H16A 109.5 C31—C30—C29 121.0 (3)
C7—C16—H16B 109.5 C31—C30—H30 119.5
H16A—C16—H16B 109.5 C29—C30—H30 119.5
C7—C16—H16C 109.5 C30—C31—C32 119.4 (3)
H16A—C16—H16C 109.5 C30—C31—H31 120.3
H16B—C16—H16C 109.5 C32—C31—H31 120.3
C7—C16—H16D 109.5 C31—C32—C33 120.6 (3)
H16A—C16—H16D 141.1 C31—C32—H32 119.7
H16B—C16—H16D 56.3 C33—C32—H32 119.7
H16C—C16—H16D 56.3 C28—C33—C32 120.7 (3)
C7—C16—H16E 109.5 C28—C33—H33 119.6
H16A—C16—H16E 56.3 C32—C33—H33 119.6
H16B—C16—H16E 141.1 O35—C34—H34A 109.5
H16C—C16—H16E 56.3 O35—C34—H34B 109.5
H16D—C16—H16E 109.5 H34A—C34—H34B 109.5
C7—C16—H16F 109.5 O35—C34—H34C 109.5
H16A—C16—H16F 56.3 H34A—C34—H34C 109.5
H16B—C16—H16F 56.3 H34B—C34—H34C 109.5
H16C—C16—H16F 141.1 C34—O35—H35 109.5
C10—O1—C2—O11 179.8 (2) N24—C13—C14—O15 57.6 (2)
C10—O1—C2—C3 0.6 (3) C23—C13—C14—O15 179.33 (17)
O11—C2—C3—C4 −179.2 (2) C12—C13—C14—O15 −58.1 (2)
O1—C2—C3—C4 −0.1 (3) C3—C4—O15—C14 5.6 (3)
O11—C2—C3—C12 0.5 (3) C5—C4—O15—C14 −177.71 (18)
O1—C2—C3—C12 179.67 (19) O34—C14—O15—C4 −144.9 (2)
C2—C3—C4—O15 175.6 (2) C13—C14—O15—C4 28.2 (3)
C12—C3—C4—O15 −4.2 (3) C3—C12—C17—C22 −38.0 (3)
C2—C3—C4—C5 −0.8 (3) C13—C12—C17—C22 85.9 (3)
C12—C3—C4—C5 179.5 (2) C3—C12—C17—C18 140.8 (2)
C3—C4—C5—C10 1.1 (3) C13—C12—C17—C18 −95.3 (3)
O15—C4—C5—C10 −175.52 (19) C22—C17—C18—C19 −0.7 (4)
C3—C4—C5—C6 178.7 (2) C12—C17—C18—C19 −179.5 (2)
O15—C4—C5—C6 2.0 (3) C17—C18—C19—C20 0.3 (5)
C10—C5—C6—C7 −0.7 (4) C18—C19—C20—C21 0.1 (5)
C4—C5—C6—C7 −178.2 (2) C19—C20—C21—C22 −0.2 (5)
C5—C6—C7—C8 0.1 (4) C18—C17—C22—C21 0.6 (4)
C5—C6—C7—C16 179.5 (2) C12—C17—C22—C21 179.4 (2)
C6—C7—C8—C9 0.4 (4) C20—C21—C22—C17 −0.1 (4)
C16—C7—C8—C9 −178.9 (3) C14—C13—N24—C26 35.9 (3)
C7—C8—C9—C10 −0.4 (4) C23—C13—N24—C26 −85.3 (3)
C2—O1—C10—C9 −179.3 (2) C12—C13—N24—C26 149.6 (2)
C2—O1—C10—C5 −0.3 (3) C14—C13—N24—C25 −161.6 (2)
C8—C9—C10—O1 178.8 (2) C23—C13—N24—C25 77.2 (2)
C8—C9—C10—C5 −0.1 (4) C12—C13—N24—C25 −47.8 (3)
C6—C5—C10—O1 −178.3 (2) C25—N24—C26—O27 −163.2 (2)
C4—C5—C10—O1 −0.6 (3) C13—N24—C26—O27 −1.3 (3)
C6—C5—C10—C9 0.7 (3) C25—N24—C26—C28 20.1 (3)
C4—C5—C10—C9 178.4 (2) C13—N24—C26—C28 −177.9 (2)
C4—C3—C12—C17 98.8 (2) O27—C26—C28—C33 61.0 (4)
C2—C3—C12—C17 −80.9 (3) N24—C26—C28—C33 −122.4 (3)
C4—C3—C12—C13 −28.3 (3) O27—C26—C28—C29 −116.1 (3)
C2—C3—C12—C13 151.9 (2) N24—C26—C28—C29 60.5 (3)
C3—C12—C13—N24 −62.3 (2) C33—C28—C29—C30 −0.8 (4)
C17—C12—C13—N24 170.9 (2) C26—C28—C29—C30 176.3 (3)
C3—C12—C13—C14 55.0 (2) C28—C29—C30—C31 1.9 (5)
C17—C12—C13—C14 −71.8 (2) C29—C30—C31—C32 −1.4 (5)
C3—C12—C13—C23 174.7 (2) C30—C31—C32—C33 −0.2 (5)
C17—C12—C13—C23 47.9 (3) C29—C28—C33—C32 −0.8 (4)
N24—C13—C14—O34 −130.1 (2) C26—C28—C33—C32 −177.9 (3)
C23—C13—C14—O34 −8.3 (3) C31—C32—C33—C28 1.3 (5)
C12—C13—C14—O34 114.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O35—H35···O27 0.82 1.99 2.784 (3) 163
C9—H9···O35i 0.93 2.46 3.320 (4) 153
C19—H19···O11ii 0.93 2.60 3.403 (3) 144

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2217).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Bruker (1999). XSCANS Release 2.31. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruno, G., Nicoló, F., Rotondo, A., Foti, F., Risitano, F., Grassi, G. & Bilardo, C. (2001). Acta Cryst. C57, 493–494. [DOI] [PubMed]
  5. Frisch, M. J. et al. (1998). GAUSSIAN98 Gaussian, Inc., Pittsburgh, Pennsylvania, USA.
  6. Grassi, G., Cordaro, M., Bruno, G. & Nicolò, F. (2002). Helv. Chim. Acta, 85, 196–205.
  7. Grassi, G., Risitano, F., Foti, F., Cordaro, M., Bruno, G. & Nicolò, F. (2003). Chem. Commun. pp. 1868–1869. [DOI] [PubMed]
  8. Harborne, J. B. & Baxter, H. (1999). The Handbook of Natural Flavonoids Chichester: Wiley.
  9. Kokila, M. K., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078–2081.
  10. Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348–351.
  11. Murray, R. D. H., Medez, J. & Brown, S. A. (1982). In The Natural Coumarins: Occurence, Chemistry and Biochemistry New York: Wiley.
  12. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  13. Qabaja, G. E., Perchellet, M., Perchellet, J. P. & Jones, G. B. (2000). Tetrahedron Lett.41, 3007–3010.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Siemens (1996). XPW Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  16. Yu, X. L., Scheller, D., Rademacher, O. & Wolff, T. (2003). J. Org. Chem.68, 7386–7399. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043709/jh2217sup1.cif

e-66-o3356-sup1.cif (26.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043709/jh2217Isup2.hkl

e-66-o3356-Isup2.hkl (208.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES