Abstract
The molecule of the title compound, C28H28N2O6P2, is organized around an inversion center located at the centre of the piperazine ring. Both piperazine N atoms are substituted by P(O)(OC6H5)2 phosphoester groups. The P atoms display a slightly distorted tetrahedral environment; the N atoms show some deviation from planarity. The O atoms of the P=O groups are involved in intermolecular C—H⋯O hydrogen bonds, building R 2 2(22) rings, in extended chains parallel to the a axis. C—H⋯π interactions involving the phenyl rings further stabilize the packing.
Related literature
For the physical properties of bisphosphoramidates, see: Nguyen & Kim (2008 ▶). For related structures, see: Chen et al. (2007 ▶); Balakrishna et al. (2003 ▶, 2006 ▶); Rodriguez i Zubiri et al. (2002 ▶). For hydrogen-bond motifs, see: Etter et al. (1990 ▶); Bernstein et al. (1995 ▶).
Experimental
Crystal data
C28H28N2O6P2
M r = 550.46
Monoclinic,
a = 6.3117 (4) Å
b = 8.9530 (5) Å
c = 22.8630 (13) Å
β = 96.756 (1)°
V = 1282.99 (13) Å3
Z = 2
Mo Kα radiation
μ = 0.22 mm−1
T = 100 K
0.55 × 0.40 × 0.20 mm
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.890, T max = 0.958
14864 measured reflections
3405 independent reflections
3071 reflections with I > 2σ(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.089
S = 1.03
3405 reflections
172 parameters
H-atom parameters constrained
Δρmax = 0.51 e Å−3
Δρmin = −0.27 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶), ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047860/dn2623sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047860/dn2623Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 and Cg2 are the centroids of the C3–C8 and C11–C14 rings, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C14—H14A⋯O1i | 0.95 | 2.49 | 3.4327 (15) | 172 |
| C11—H11A⋯Cg1ii | 0.95 | 2.74 | 3.3324 (12) | 121 |
| C7—H7A⋯Cg2iii | 0.95 | 2.59 | 3.4099 (13) | 145 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.
supplementary crystallographic information
Comment
The thermal behavior and flame retardancies of some bisphosphoramidates, with a P(O)XP(O) skeleton, such as the title compound have been investigated by Nguyen & Kim (2008). Here, we report the crystal structure of the title compound.
The molecule of the title compound is organized around inversion center located in the middle of the piperazine ring. Both the nitrogen atoms of the piperazine are substituted by the P(O)(OC6H5)2 phosphoester moieties (Fig. 1). The phosphorus atom has a distorted tetrahedral configuration with the bond angles in the range of 99.04 (4)° [O(2)–P(1)–O(3)] to 115.93 (5)° [O(1)–P(1)–O(2)]. As observed in related compounds containing piperazine ring substituted by phosphorus (Chen et al., 2007; Balakrishna et al., 2003, 2006; Rodriguez i Zubiri et al., 2002), the N atom shows some deviation from planarity, indeed it is 0.25 (1)Å above the C1, C2, P1 plane.
The oxygen atom of P═O group are involved in a C–H···O hydrogen bond building a R22(22) ring (Etter et al., 1990; Bernstein et al., 1995) (Table 1, Fig. 2). Furthermore, these rings are interconnected building infinite chains parallel to the a axis. C–H···π interactions involving the phenyl rings stabilize the packing (Table 1).
Experimental
To a solution of (C6H5O)2P(O)Cl in chloroform, a solution of piperazine and triethylamine (2:1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water and recrystallized from chloroform/n-heptane at room temperature. IR (KBr, cm-1): 3051.2, 2913.8, 2866.3, 1592.5, 1490.4, 1383.3, 1334.6, 1261.7, 1198.5, 1135.3, 1067.1, 1013.7, 969.8, 931.6, 776.8, 686.8. Raman (cm-1): 3066.5, 2526.4, 1593.0, 1469.5, 1452.2, 1265.1, 1218.8, 1168.7, 1157.1, 1024.0, 1006.6, 939.2, 771.4, 705.8, 617.1, 414.6, 262.2. 31P{1H} NMR (202.45 MHz, DMSO-d6, 300.0 K, H3PO4 external): -1.45 p.p.m. (s). 1H NMR (500.13 MHz, DMSO-d6, 300.0 K, TMS): 3.01 (s, 8H, CH2), 7.15–7.27 (m, 12H, Ar—H), 7.38–7.40 p.p.m. (m, 8H, Ar—H). 13C NMR (125.75 MHz, DMSO-d6, 300.0 K, TMS): 43.98 (d, 2(&3)J(P,C) = 3.5 Hz, 4 C), 119.94 (d, 3J(P,C) = 4.7 Hz, 8 C, Cortho), 125.11 (s), 129.90 (s), 150.07 p.p.m. (d, 2J(P,C) = 6.4 Hz, 4 C, Cipso).
Refinement
H atoms were placed in calculated positions and included in the refinement in a riding-model approximation with C–H = 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
Molecular view with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of dimer through C–H···O interactions. H bonds are shown as dashed lines. [Symmetry codes: (ii) x+1, y, z]
Crystal data
| C28H28N2O6P2 | F(000) = 576 |
| Mr = 550.46 | Dx = 1.425 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 2258 reflections |
| a = 6.3117 (4) Å | θ = 3–29° |
| b = 8.9530 (5) Å | µ = 0.22 mm−1 |
| c = 22.8630 (13) Å | T = 100 K |
| β = 96.756 (1)° | Plate, colourless |
| V = 1282.99 (13) Å3 | 0.55 × 0.40 × 0.20 mm |
| Z = 2 |
Data collection
| Bruker APEXII CCD area-detector diffractometer | 3405 independent reflections |
| Radiation source: fine-focus sealed tube | 3071 reflections with I > 2σ(I) |
| graphite | Rint = 0.025 |
| ω scans | θmax = 29.0°, θmin = 1.8° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −8→8 |
| Tmin = 0.890, Tmax = 0.958 | k = −12→12 |
| 14864 measured reflections | l = −30→31 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.089 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0496P)2 + 0.567P] where P = (Fo2 + 2Fc2)/3 |
| 3405 reflections | (Δ/σ)max = 0.002 |
| 172 parameters | Δρmax = 0.51 e Å−3 |
| 0 restraints | Δρmin = −0.27 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| P1 | 0.29408 (4) | 0.70141 (3) | 0.584588 (12) | 0.01226 (9) | |
| O1 | 0.08499 (13) | 0.65211 (10) | 0.59873 (4) | 0.01722 (18) | |
| O2 | 0.30060 (14) | 0.86102 (9) | 0.55434 (4) | 0.01595 (17) | |
| O3 | 0.46851 (13) | 0.72855 (9) | 0.63989 (3) | 0.01431 (17) | |
| N1 | 0.40456 (15) | 0.59125 (11) | 0.54033 (4) | 0.01435 (19) | |
| C1 | 0.27230 (18) | 0.49056 (13) | 0.50046 (5) | 0.0154 (2) | |
| H1A | 0.2168 | 0.5452 | 0.4642 | 0.019* | |
| H1B | 0.1490 | 0.4557 | 0.5198 | 0.019* | |
| C2 | 0.59794 (18) | 0.64262 (13) | 0.51554 (5) | 0.0159 (2) | |
| H2A | 0.6852 | 0.7054 | 0.5448 | 0.019* | |
| H2B | 0.5564 | 0.7039 | 0.4800 | 0.019* | |
| C3 | 0.24646 (19) | 0.99346 (12) | 0.58193 (5) | 0.0141 (2) | |
| C4 | 0.03688 (19) | 1.04226 (13) | 0.57405 (5) | 0.0174 (2) | |
| H4A | −0.0717 | 0.9831 | 0.5531 | 0.021* | |
| C5 | −0.0111 (2) | 1.18012 (14) | 0.59758 (6) | 0.0213 (2) | |
| H5A | −0.1538 | 1.2157 | 0.5925 | 0.026* | |
| C6 | 0.1478 (2) | 1.26566 (14) | 0.62831 (6) | 0.0224 (3) | |
| H6A | 0.1142 | 1.3603 | 0.6436 | 0.027* | |
| C7 | 0.3561 (2) | 1.21302 (14) | 0.63680 (6) | 0.0221 (3) | |
| H7A | 0.4642 | 1.2709 | 0.6586 | 0.026* | |
| C8 | 0.40715 (19) | 1.07579 (14) | 0.61346 (5) | 0.0181 (2) | |
| H8A | 0.5494 | 1.0393 | 0.6191 | 0.022* | |
| C9 | 0.51165 (18) | 0.61794 (12) | 0.68335 (5) | 0.0136 (2) | |
| C10 | 0.36396 (19) | 0.58904 (13) | 0.72215 (5) | 0.0160 (2) | |
| H10A | 0.2295 | 0.6380 | 0.7181 | 0.019* | |
| C11 | 0.4174 (2) | 0.48638 (14) | 0.76736 (5) | 0.0190 (2) | |
| H11A | 0.3176 | 0.4638 | 0.7941 | 0.023* | |
| C12 | 0.6154 (2) | 0.41695 (14) | 0.77356 (5) | 0.0203 (2) | |
| H12A | 0.6518 | 0.3486 | 0.8049 | 0.024* | |
| C13 | 0.7607 (2) | 0.44750 (14) | 0.73384 (6) | 0.0204 (2) | |
| H13A | 0.8957 | 0.3993 | 0.7380 | 0.025* | |
| C14 | 0.70950 (18) | 0.54823 (13) | 0.68798 (5) | 0.0168 (2) | |
| H14A | 0.8075 | 0.5688 | 0.6605 | 0.020* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| P1 | 0.01325 (14) | 0.01125 (14) | 0.01239 (14) | 0.00080 (10) | 0.00199 (10) | −0.00088 (9) |
| O1 | 0.0147 (4) | 0.0193 (4) | 0.0182 (4) | 0.0001 (3) | 0.0038 (3) | −0.0014 (3) |
| O2 | 0.0226 (4) | 0.0125 (4) | 0.0133 (4) | 0.0031 (3) | 0.0041 (3) | −0.0003 (3) |
| O3 | 0.0169 (4) | 0.0121 (4) | 0.0136 (4) | −0.0012 (3) | −0.0001 (3) | 0.0006 (3) |
| N1 | 0.0137 (4) | 0.0127 (4) | 0.0170 (5) | −0.0015 (3) | 0.0031 (3) | −0.0035 (3) |
| C1 | 0.0135 (5) | 0.0158 (5) | 0.0170 (5) | −0.0008 (4) | 0.0017 (4) | −0.0036 (4) |
| C2 | 0.0165 (5) | 0.0133 (5) | 0.0187 (5) | −0.0013 (4) | 0.0054 (4) | −0.0029 (4) |
| C3 | 0.0207 (5) | 0.0103 (5) | 0.0116 (5) | 0.0014 (4) | 0.0039 (4) | 0.0008 (4) |
| C4 | 0.0195 (5) | 0.0157 (5) | 0.0166 (5) | 0.0005 (4) | 0.0005 (4) | 0.0003 (4) |
| C5 | 0.0238 (6) | 0.0170 (6) | 0.0240 (6) | 0.0060 (5) | 0.0065 (5) | 0.0036 (5) |
| C6 | 0.0344 (7) | 0.0118 (5) | 0.0229 (6) | 0.0006 (5) | 0.0112 (5) | −0.0009 (4) |
| C7 | 0.0290 (6) | 0.0170 (6) | 0.0206 (6) | −0.0073 (5) | 0.0049 (5) | −0.0026 (4) |
| C8 | 0.0191 (5) | 0.0177 (6) | 0.0179 (5) | −0.0020 (4) | 0.0033 (4) | 0.0012 (4) |
| C9 | 0.0165 (5) | 0.0107 (5) | 0.0130 (5) | −0.0004 (4) | −0.0004 (4) | −0.0008 (4) |
| C10 | 0.0174 (5) | 0.0157 (5) | 0.0150 (5) | 0.0024 (4) | 0.0027 (4) | −0.0012 (4) |
| C11 | 0.0249 (6) | 0.0178 (5) | 0.0148 (5) | 0.0005 (5) | 0.0045 (4) | 0.0005 (4) |
| C12 | 0.0268 (6) | 0.0166 (6) | 0.0167 (5) | 0.0024 (5) | −0.0011 (5) | 0.0019 (4) |
| C13 | 0.0181 (5) | 0.0180 (6) | 0.0245 (6) | 0.0037 (4) | −0.0006 (5) | −0.0001 (5) |
| C14 | 0.0154 (5) | 0.0157 (5) | 0.0195 (5) | 0.0000 (4) | 0.0021 (4) | −0.0016 (4) |
Geometric parameters (Å, °)
| P1—O1 | 1.4633 (9) | C5—C6 | 1.3855 (19) |
| P1—O2 | 1.5901 (9) | C5—H5A | 0.9500 |
| P1—O3 | 1.5944 (8) | C6—C7 | 1.3885 (19) |
| P1—N1 | 1.6275 (10) | C6—H6A | 0.9500 |
| O2—C3 | 1.4040 (13) | C7—C8 | 1.3923 (17) |
| O3—C9 | 1.4066 (13) | C7—H7A | 0.9500 |
| N1—C1 | 1.4702 (14) | C8—H8A | 0.9500 |
| N1—C2 | 1.4783 (14) | C9—C10 | 1.3847 (16) |
| C1—C2i | 1.5155 (16) | C9—C14 | 1.3889 (16) |
| C1—H1A | 0.9900 | C10—C11 | 1.3946 (16) |
| C1—H1B | 0.9900 | C10—H10A | 0.9500 |
| C2—C1i | 1.5155 (16) | C11—C12 | 1.3880 (18) |
| C2—H2A | 0.9900 | C11—H11A | 0.9500 |
| C2—H2B | 0.9900 | C12—C13 | 1.3913 (18) |
| C3—C4 | 1.3846 (16) | C12—H12A | 0.9500 |
| C3—C8 | 1.3855 (17) | C13—C14 | 1.3919 (17) |
| C4—C5 | 1.3937 (17) | C13—H13A | 0.9500 |
| C4—H4A | 0.9500 | C14—H14A | 0.9500 |
| O1—P1—O2 | 115.93 (5) | C6—C5—H5A | 119.7 |
| O1—P1—O3 | 115.30 (5) | C4—C5—H5A | 119.7 |
| O2—P1—O3 | 99.04 (4) | C5—C6—C7 | 120.00 (11) |
| O1—P1—N1 | 114.71 (5) | C5—C6—H6A | 120.0 |
| O2—P1—N1 | 103.85 (5) | C7—C6—H6A | 120.0 |
| O3—P1—N1 | 106.20 (5) | C6—C7—C8 | 120.27 (12) |
| C3—O2—P1 | 122.92 (7) | C6—C7—H7A | 119.9 |
| C9—O3—P1 | 120.74 (7) | C8—C7—H7A | 119.9 |
| C1—N1—C2 | 112.78 (9) | C3—C8—C7 | 118.71 (11) |
| C1—N1—P1 | 120.23 (8) | C3—C8—H8A | 120.6 |
| C2—N1—P1 | 118.91 (7) | C7—C8—H8A | 120.6 |
| N1—C1—C2i | 110.39 (9) | C10—C9—C14 | 122.29 (11) |
| N1—C1—H1A | 109.6 | C10—C9—O3 | 119.68 (10) |
| C2i—C1—H1A | 109.6 | C14—C9—O3 | 117.89 (10) |
| N1—C1—H1B | 109.6 | C9—C10—C11 | 118.39 (11) |
| C2i—C1—H1B | 109.6 | C9—C10—H10A | 120.8 |
| H1A—C1—H1B | 108.1 | C11—C10—H10A | 120.8 |
| N1—C2—C1i | 109.99 (9) | C12—C11—C10 | 120.49 (11) |
| N1—C2—H2A | 109.7 | C12—C11—H11A | 119.8 |
| C1i—C2—H2A | 109.7 | C10—C11—H11A | 119.8 |
| N1—C2—H2B | 109.7 | C11—C12—C13 | 119.99 (11) |
| C1i—C2—H2B | 109.7 | C11—C12—H12A | 120.0 |
| H2A—C2—H2B | 108.2 | C13—C12—H12A | 120.0 |
| C4—C3—C8 | 121.97 (11) | C12—C13—C14 | 120.44 (11) |
| C4—C3—O2 | 119.17 (10) | C12—C13—H13A | 119.8 |
| C8—C3—O2 | 118.76 (10) | C14—C13—H13A | 119.8 |
| C3—C4—C5 | 118.47 (11) | C9—C14—C13 | 118.39 (11) |
| C3—C4—H4A | 120.8 | C9—C14—H14A | 120.8 |
| C5—C4—H4A | 120.8 | C13—C14—H14A | 120.8 |
| C6—C5—C4 | 120.55 (12) |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °)
| Cg1 and Cg2 are the centroids of the C3–C8 and C11–C14 rings, respectively. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| C14—H14A···O1ii | 0.95 | 2.49 | 3.4327 (15) | 172 |
| C11—H11A···Cg1iii | 0.95 | 2.74 | 3.3324 (12) | 121 |
| C7—H7A···Cg2iv | 0.95 | 2.59 | 3.4099 (13) | 145 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2623).
References
- Balakrishna, M. S., George, P. P. & Mague, J. T. (2003). J. Chem. Res. pp. 576–577.
- Balakrishna, M. S., George, P. P. & Mague, J. T. (2006). Phosphorus Sulfur Silicon Relat. Elem.181, 141–146.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chen, X., Xiao, W. & Jiao, P. (2007). Acta Cryst. E63, o4271.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Nguyen, C. & Kim, J. (2008). Polym. Degrad. Stabil.93, 1037–1043.
- Rodriguez i Zubiri, M., Slawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). Polyhedron, 21, 1729–1736.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047860/dn2623sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047860/dn2623Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


