Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 24;66(Pt 12):o3292. doi: 10.1107/S160053681004818X

(1-Adamant­yl)(2-methyl­phen­yl)methanone

Eva Babjaková a, Marek Nečas b, Robert Vícha a,*
PMCID: PMC3011809  PMID: 21589571

Abstract

In the title compound, C18H22O, the dihedral angle between the carbonyl and benzene planes is 69.11 (6)°. In the adamantyl group, the three fused cyclo­hexane rings have almost ideal chair conformations, with C—C—C angles in the range 108.14 (11)–110.50 (11)°. No specific inter­molecular inter­actions (other than van der Waals inter­actions) are present in the crystal.

Related literature

For background to the synthesis, see: Vícha et al. (2006); Austin & Johnson (1932). For an alternative method for the preparation of the title compound, see: Lo Fiego et al. (2009).graphic file with name e-66-o3292-scheme1.jpg

Experimental

Crystal data

  • C18H22O

  • M r = 254.36

  • Monoclinic, Inline graphic

  • a = 6.6988 (4) Å

  • b = 12.2971 (6) Å

  • c = 16.7670 (7) Å

  • β = 92.244 (4)°

  • V = 1380.14 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.974, T max = 1.000

  • 8111 measured reflections

  • 2414 independent reflections

  • 1673 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.084

  • S = 0.96

  • 2414 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 .

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004818X/pk2284sup1.cif

e-66-o3292-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004818X/pk2284Isup2.hkl

e-66-o3292-Isup2.hkl (118.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of this work by inter­nal grant of TBU in Zlín No. IGA/7/FT/10/D funded from the resources of specific university research is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound arose from the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride as a product of the rearrangement of a starting Grignard reagent. Similar behavior of benzylmagnesium halides has been described previously (Austin & Johnson, 1932). Alternatively, the title compound may be prepared by the reaction of adamantane-1-carbonyl chloride with 2-methylphenyl(tributyl)stannane as Lo Fiego et al. (2009) have described. In the molecule of the title compound (Fig. 1), the angle between carbonyl plane P1 (C1, C11, C12, O1) and benzene ring plane P2 (C12–C17) is 69.11 (6)°. Such a large twist may be attributed to the steric hindrance between the bulky adamantane moiety and the benzene ring. Nevertheless, the carbon of the methyl group in the ortho position is located almost in the ring plane with a deviation of 0.0587 (15) Å. Maximum deviations from the best planes are 0.0229 (13)Å for C11 and -0.0132 (13)Å for C12, respectively. No specific intermolecular interactions were observed in crystal packing.

Experimental

The title compound was prepared by the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride according to the procedure published previously (Vícha et al., 2006). The colorless microcrystalline powder was isolated from a crude complex mixture by column chromatography (silicagel; petroleum ether/ethyl acetate, v/v, 16/1). A single-crystal for X-ray analysis was acquired by spontaneous evaporation from deuterochloroform at room temperature.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure showing unit cell projected along the a-axis. H-atoms have been omitted for clarity.

Crystal data

C18H22O F(000) = 552
Mr = 254.36 Dx = 1.224 Mg m3
Monoclinic, P21/c Melting point: 345 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 6.6988 (4) Å Cell parameters from 2705 reflections
b = 12.2971 (6) Å θ = 3.3–27.3°
c = 16.7670 (7) Å µ = 0.07 mm1
β = 92.244 (4)° T = 120 K
V = 1380.14 (12) Å3 Block, colourless
Z = 4 0.40 × 0.40 × 0.30 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector 2414 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1673 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 8.4353 pixels mm-1 θmax = 25.0°, θmin = 3.5°
ω scan h = −7→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −14→14
Tmin = 0.974, Tmax = 1.000 l = −19→19
8111 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0418P)2] where P = (Fo2 + 2Fc2)/3
2414 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.03229 (15) 0.67052 (8) 0.17539 (6) 0.0327 (3)
C1 0.0839 (2) 0.76864 (11) 0.29798 (8) 0.0198 (3)
C2 0.2536 (2) 0.71524 (12) 0.34999 (8) 0.0275 (4)
H2A 0.2572 0.6361 0.3393 0.033*
H2B 0.3839 0.7466 0.3361 0.033*
C3 0.2185 (2) 0.73491 (13) 0.43858 (9) 0.0311 (4)
H3 0.3283 0.7000 0.4716 0.037*
C4 0.2157 (2) 0.85708 (14) 0.45562 (9) 0.0362 (4)
H4A 0.1940 0.8697 0.5130 0.043*
H4B 0.3458 0.8896 0.4428 0.043*
C5 0.0483 (2) 0.91065 (12) 0.40506 (9) 0.0309 (4)
H5 0.0471 0.9906 0.4161 0.037*
C6 −0.1514 (2) 0.86164 (12) 0.42657 (9) 0.0292 (4)
H6A −0.2608 0.8966 0.3945 0.035*
H6B −0.1747 0.8748 0.4837 0.035*
C7 −0.1501 (2) 0.73938 (12) 0.41004 (8) 0.0247 (4)
H7 −0.2811 0.7073 0.4243 0.030*
C8 −0.1164 (2) 0.71996 (12) 0.32129 (8) 0.0244 (4)
H8A −0.2263 0.7538 0.2888 0.029*
H8B −0.1173 0.6409 0.3102 0.029*
C9 0.0183 (2) 0.68552 (12) 0.46001 (9) 0.0293 (4)
H9A −0.0036 0.6968 0.5175 0.035*
H9B 0.0192 0.6063 0.4495 0.035*
C10 0.0831 (2) 0.89173 (11) 0.31629 (8) 0.0268 (4)
H10A 0.2126 0.9240 0.3024 0.032*
H10B −0.0239 0.9277 0.2835 0.032*
C11 0.1261 (2) 0.74157 (11) 0.21138 (8) 0.0217 (3)
C12 0.2950 (2) 0.79751 (11) 0.17062 (8) 0.0200 (3)
C13 0.2765 (2) 0.90683 (12) 0.14885 (8) 0.0262 (4)
H13 0.1590 0.9456 0.1611 0.031*
C14 0.4271 (2) 0.95941 (12) 0.10975 (9) 0.0306 (4)
H14 0.4125 1.0336 0.0947 0.037*
C15 0.5985 (2) 0.90312 (13) 0.09284 (8) 0.0312 (4)
H15 0.7042 0.9390 0.0673 0.037*
C16 0.6163 (2) 0.79443 (12) 0.11302 (8) 0.0269 (4)
H16 0.7346 0.7565 0.1006 0.032*
C17 0.4658 (2) 0.73909 (11) 0.15109 (8) 0.0218 (3)
C18 0.4921 (2) 0.61964 (12) 0.16948 (9) 0.0297 (4)
H18A 0.6308 0.5985 0.1613 0.045*
H18B 0.4026 0.5770 0.1340 0.045*
H18C 0.4598 0.6059 0.2251 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0341 (7) 0.0331 (6) 0.0309 (6) −0.0089 (5) 0.0016 (5) −0.0102 (5)
C1 0.0196 (8) 0.0194 (8) 0.0203 (8) 0.0001 (6) 0.0004 (6) 0.0000 (6)
C2 0.0223 (9) 0.0350 (9) 0.0253 (9) 0.0044 (7) 0.0000 (7) 0.0016 (7)
C3 0.0246 (9) 0.0471 (11) 0.0213 (8) 0.0065 (8) −0.0027 (7) 0.0032 (7)
C4 0.0332 (10) 0.0530 (12) 0.0227 (9) −0.0160 (8) 0.0029 (8) −0.0080 (8)
C5 0.0445 (11) 0.0230 (9) 0.0258 (9) −0.0058 (7) 0.0082 (8) −0.0059 (7)
C6 0.0322 (10) 0.0299 (9) 0.0259 (9) 0.0060 (7) 0.0047 (7) 0.0001 (7)
C7 0.0212 (9) 0.0276 (9) 0.0255 (8) −0.0032 (7) 0.0031 (7) 0.0017 (7)
C8 0.0231 (9) 0.0233 (8) 0.0266 (8) −0.0033 (6) −0.0006 (7) −0.0009 (6)
C9 0.0359 (10) 0.0277 (9) 0.0247 (8) 0.0044 (7) 0.0050 (7) 0.0033 (7)
C10 0.0339 (10) 0.0210 (8) 0.0258 (8) −0.0035 (7) 0.0039 (7) −0.0006 (6)
C11 0.0215 (8) 0.0185 (8) 0.0248 (8) 0.0040 (7) −0.0041 (7) 0.0007 (6)
C12 0.0243 (9) 0.0206 (8) 0.0150 (7) −0.0006 (6) −0.0020 (6) −0.0010 (6)
C13 0.0317 (9) 0.0245 (9) 0.0224 (8) 0.0036 (7) 0.0019 (7) −0.0006 (6)
C14 0.0459 (11) 0.0214 (9) 0.0245 (9) −0.0030 (7) 0.0026 (8) 0.0029 (6)
C15 0.0341 (10) 0.0357 (10) 0.0240 (8) −0.0093 (8) 0.0040 (7) 0.0002 (7)
C16 0.0229 (9) 0.0356 (10) 0.0221 (8) 0.0013 (7) 0.0013 (7) −0.0034 (7)
C17 0.0246 (9) 0.0239 (8) 0.0167 (7) 0.0012 (6) −0.0028 (6) −0.0020 (6)
C18 0.0313 (9) 0.0263 (9) 0.0315 (9) 0.0065 (7) −0.0001 (7) −0.0024 (7)

Geometric parameters (Å, °)

O1—C11 1.2219 (16) C7—H7 1.0000
C1—C11 1.5268 (18) C8—H8A 0.9900
C1—C8 1.5338 (19) C8—H8B 0.9900
C1—C10 1.5445 (18) C9—H9A 0.9900
C1—C2 1.551 (2) C9—H9B 0.9900
C2—C3 1.5321 (19) C10—H10A 0.9900
C2—H2A 0.9900 C10—H10B 0.9900
C2—H2B 0.9900 C11—C12 1.5101 (19)
C3—C9 1.528 (2) C12—C13 1.3972 (18)
C3—C4 1.530 (2) C12—C17 1.4009 (19)
C3—H3 1.0000 C13—C14 1.3843 (19)
C4—C5 1.529 (2) C13—H13 0.9500
C4—H4A 0.9900 C14—C15 1.380 (2)
C4—H4B 0.9900 C14—H14 0.9500
C5—C6 1.5232 (19) C15—C16 1.383 (2)
C5—C10 1.5332 (19) C15—H15 0.9500
C5—H5 1.0000 C16—C17 1.3918 (19)
C6—C7 1.529 (2) C16—H16 0.9500
C6—H6A 0.9900 C17—C18 1.5097 (19)
C6—H6B 0.9900 C18—H18A 0.9800
C7—C9 1.529 (2) C18—H18B 0.9800
C7—C8 1.5325 (18) C18—H18C 0.9800
C11—C1—C8 110.71 (12) C1—C8—H8A 109.6
C11—C1—C10 113.89 (11) C7—C8—H8B 109.6
C8—C1—C10 108.78 (11) C1—C8—H8B 109.6
C11—C1—C2 106.46 (11) H8A—C8—H8B 108.1
C8—C1—C2 108.70 (11) C3—C9—C7 109.53 (12)
C10—C1—C2 108.14 (12) C3—C9—H9A 109.8
C3—C2—C1 109.96 (12) C7—C9—H9A 109.8
C3—C2—H2A 109.7 C3—C9—H9B 109.8
C1—C2—H2A 109.7 C7—C9—H9B 109.8
C3—C2—H2B 109.7 H9A—C9—H9B 108.2
C1—C2—H2B 109.7 C5—C10—C1 110.09 (11)
H2A—C2—H2B 108.2 C5—C10—H10A 109.6
C9—C3—C4 109.22 (12) C1—C10—H10A 109.6
C9—C3—C2 109.56 (13) C5—C10—H10B 109.6
C4—C3—C2 109.85 (12) C1—C10—H10B 109.6
C9—C3—H3 109.4 H10A—C10—H10B 108.2
C4—C3—H3 109.4 O1—C11—C12 118.83 (13)
C2—C3—H3 109.4 O1—C11—C1 120.98 (13)
C5—C4—C3 109.49 (12) C12—C11—C1 120.07 (12)
C5—C4—H4A 109.8 C13—C12—C17 119.81 (13)
C3—C4—H4A 109.8 C13—C12—C11 119.76 (12)
C5—C4—H4B 109.8 C17—C12—C11 120.36 (12)
C3—C4—H4B 109.8 C14—C13—C12 120.96 (14)
H4A—C4—H4B 108.2 C14—C13—H13 119.5
C6—C5—C4 109.28 (12) C12—C13—H13 119.5
C6—C5—C10 109.77 (13) C15—C14—C13 119.38 (14)
C4—C5—C10 109.68 (13) C15—C14—H14 120.3
C6—C5—H5 109.4 C13—C14—H14 120.3
C4—C5—H5 109.4 C14—C15—C16 119.94 (14)
C10—C5—H5 109.4 C14—C15—H15 120.0
C5—C6—C7 109.56 (12) C16—C15—H15 120.0
C5—C6—H6A 109.8 C15—C16—C17 121.86 (14)
C7—C6—H6A 109.8 C15—C16—H16 119.1
C5—C6—H6B 109.8 C17—C16—H16 119.1
C7—C6—H6B 109.8 C16—C17—C12 117.99 (13)
H6A—C6—H6B 108.2 C16—C17—C18 119.27 (13)
C6—C7—C9 109.62 (12) C12—C17—C18 122.74 (12)
C6—C7—C8 109.35 (11) C17—C18—H18A 109.5
C9—C7—C8 109.33 (12) C17—C18—H18B 109.5
C6—C7—H7 109.5 H18A—C18—H18B 109.5
C9—C7—H7 109.5 C17—C18—H18C 109.5
C8—C7—H7 109.5 H18A—C18—H18C 109.5
C7—C8—C1 110.50 (12) H18B—C18—H18C 109.5
C7—C8—H8A 109.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2284).

References

  1. Austin, P. R. & Johnson, J. R. (1932). J. Am. Chem. Soc.54, 647–660.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Lo Fiego, M. J., Lockhart, M. T. & Chopa, A. B. (2009). J. Organomet. Chem.694, 3674–3678.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  7. Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun.71, 709–722.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004818X/pk2284sup1.cif

e-66-o3292-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004818X/pk2284Isup2.hkl

e-66-o3292-Isup2.hkl (118.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES