Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Jan;53(1):219–227. doi: 10.1172/JCI107541

Mechanism of Suppression of Vasopressin during Alpha-Adrenergic Stimulation with Norepinephrine

Tomas Berl 1, Pravit Cadnapaphornchal 1, Judith A Harbottle 1, Robert W Schrier 1
PMCID: PMC301457  PMID: 4808637

Abstract

Recent studies have demonstrated that the water diuresis associated with intravenous infusion of norepinephrine is mediated primarly by suppression of antidiuretic hormone (ADH) release. To investigate whether the increase in cerebral perfusion pressure with intravenous norepinephrine (0.5 μg/kg/min) is directly responsible for suppression of ADH release, the carotid circulation of dogs was pump-perfused bilaterally to selectively increase cerebral perfusion pressure. In six experiments cerebral perfusion pressure was increased from a mean of 125 to 151 mm Hg and then returned to 120 mm Hg. This maneuver was not associated with a reversible increase in renal water excretion. The possibility was also examined that norepinephrine exerts a direct central effect to suppress ADH release. In 12 experiments norepinephrine was infused into the carotid artery in a subpressor dose (0.12 μg/kg/min) estimated to equal the amount of the catecholamine reaching the cerebral circulation with intravenous norepinephrine. The urinary osmolality (Uosm) was not significantly altered with intracarotid norepinephrine (932 to 959 mosmol/kg H2O. The possibility was also examined that changes in autonomic neural tone from arterial baroreceptors is responsible for suppression of ADH release with intravenous norepinephrine. In sham-operated animals intravenous norepinephrine diminished Uosm from 1,034 to 205 mosmol/kg H2O (P<0.001) whereas in animals with denervated arterial baroreceptors intravenous norepinephrine was not associated with a significant alteration in Uosm (1,233 to 1,232 mosmol/kg) H2O. These different effects on urinary osmolality occurred in the absence of differences in plasma osmolality and volume status. The results therefore indicate that norepinephrine primarily suppresses ADH release by altering autonomic baroreceptor tone rather than by a direct central or pressor effect of the catecholamine. This same mechanism may be the primary pathway for other nonosmotic influences on ADH release.

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALDWIN D. S., GOMBOS E. A., CHASIS H. Changes in sodium and water excretion induced by epinephrine and I-norepinephrine in normotensive and hypertensive subjects. J Lab Clin Med. 1963 May;61:832–857. [PubMed] [Google Scholar]
  2. Barker J. L., Crayton J. W., Nicoll R. A. Supraoptic neurosecretory cells: adrenergic and cholinergic sensitivity. Science. 1971 Jan 15;171(3967):208–210. doi: 10.1126/science.171.3967.208. [DOI] [PubMed] [Google Scholar]
  3. CHIDSEY C. A., KAISER G. A., SONNENBLICK E. H., SPANN J. F., BRAUNWALD E. CARDIAC NOREPHINEPHRINE STORES IN EXPERIMENTAL HEART FAILURE IN THE DOG. J Clin Invest. 1964 Dec;43:2386–2393. doi: 10.1172/JCI105113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHIEN S., PERIC B., USAMI S. The reflex nature of release of antidiuretic hormone upon common carotid occlusion in vagotomized dogs. Proc Soc Exp Biol Med. 1962 Oct;111:193–196. doi: 10.3181/00379727-111-27742. [DOI] [PubMed] [Google Scholar]
  5. Fisher D. A. Norepinephrine inhibition of vasopressin antidiuresis. J Clin Invest. 1968 Mar;47(3):540–547. doi: 10.1172/JCI105750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HENRY J. P., GAUER O. H., REEVES J. L. Evidence of the atrial location of receptors influencing urine flow. Circ Res. 1956 Jan;4(1):85–90. doi: 10.1161/01.res.4.1.85. [DOI] [PubMed] [Google Scholar]
  7. Handler J. S., Bensinger R., Orloff J. Effect of adrenergic agents on toad bladder response to ADH, 3',5'-AMP, and theophylline. Am J Physiol. 1968 Nov;215(5):1024–1031. doi: 10.1152/ajplegacy.1968.215.5.1024. [DOI] [PubMed] [Google Scholar]
  8. Klein L. A., Liberman B., Laks M., Kleeman C. R. Interrelated effects of antidiuretic hormone and adrenergic drugs on water metabolism. Am J Physiol. 1971 Dec;221(6):1657–1665. doi: 10.1152/ajplegacy.1971.221.6.1657. [DOI] [PubMed] [Google Scholar]
  9. LYDTIN H., HAMILTON W. F. EFFECT OF ACUTE CHANGES IN LEFT ATRIAL PRESSURE ON URINE FLOW IN UNANESTHETIZED DOGS. Am J Physiol. 1964 Sep;207:530–536. doi: 10.1152/ajplegacy.1964.207.3.530. [DOI] [PubMed] [Google Scholar]
  10. Liberman B., Klein L. A., Kleeman C. R. Effect of adrenergic blocking agents on the vasopressin inhibiting action of norepinephrine. Proc Soc Exp Biol Med. 1970 Jan;133(1):131–134. doi: 10.3181/00379727-133-34424. [DOI] [PubMed] [Google Scholar]
  11. PERLMUTT J. H. EFFECT OF VAGOTOMY ON RENAL FUNCTION DURING WATER DIURESIS. Proc Soc Exp Biol Med. 1964 Jun;116:270–273. doi: 10.3181/00379727-116-29222. [DOI] [PubMed] [Google Scholar]
  12. Potkay S., Daggett W. M., Jr, Gilmore J. P. Role of the vagus in body water regulation. Am J Physiol. 1970 May;218(5):1333–1336. doi: 10.1152/ajplegacy.1970.218.5.1333. [DOI] [PubMed] [Google Scholar]
  13. SHARE L., LEVY M. N. Cardiovascular receptors and blood titer of antidiuretic hormone. Am J Physiol. 1962 Sep;203:425–428. doi: 10.1152/ajplegacy.1962.203.3.425. [DOI] [PubMed] [Google Scholar]
  14. SMYTHE C. M., NICKEL J. F., BRADLEY S. E. The effect of epinephrine (USP), l-epinephrine, and l-norepinephrine on glomerular filtration rate, renal plasma flow, and the urinary excretion of sodium, potassium, and water in normal man. J Clin Invest. 1952 May;31(5):499–506. doi: 10.1172/JCI102634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schrier R. W., Berl T. Mechanism of effect of alpha adrenergic stimulation with norepinephrine on renal water excretion. J Clin Invest. 1973 Feb;52(2):502–511. doi: 10.1172/JCI107207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schrier R. W., Berl T. Mechanism of the antidiuretic effect associated with interruption of parasympathetic pathways. J Clin Invest. 1972 Oct;51(10):2613–2620. doi: 10.1172/JCI107079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schrier R. W., Earley L. E. Effects of hematocrit on renal hemodynamics and sodium excretion in hydropenic and volume-expanded dogs. J Clin Invest. 1970 Sep;49(9):1656–1667. doi: 10.1172/JCI106383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schrier R. W., Lieberman R., Ufferman R. C. Mechanism of antidiuretic effect of beta adrenergic stimulation. J Clin Invest. 1972 Jan;51(1):97–111. doi: 10.1172/JCI106803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Share L. Vasopressin, its bioassay and the physiological control of its release. Am J Med. 1967 May;42(5):701–712. doi: 10.1016/0002-9343(67)90090-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES