Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Jul;54(1):165–174. doi: 10.1172/JCI107738

Glutamine Transport in Rat Kidney Mitochondria in Metabolic Acidosis

William Adam 1,2,3, David P Simpson 1,2,3
PMCID: PMC301536  PMID: 4834886

Abstract

In order to study factors regulating renal ammoniagenesis, the transport and metabolism of L-glutamine were studied in mitochondria from kidneys of control and acidotic rats. On incubation in 1 mM [14C]glutamine, there was production and accumulation of [14C]glutamate within the matrix space. However no [14C]glutamine was detected in the matrix space, even with 10 mM [14C]glutamine as substrate or with inhibition of glutamine deamidation (low temperature, p-chloromercuribenzoate, mersalyl). These results suggest that glutamine crosses the inner membrane by a carrier-mediated step and that this step is rate-limiting in glutamine deamidation.

In chronic acidosis there is a fourfold increase in the uptake of radioactivity from [14C]glutamine, but not from α-ketoglutarate, glutamate, or acetate. In 3-h acidosis, before any increase in extracted glutaminase levels, there is a significant and reproducible increase (39±3.8%, n = 25) in matrix uptake of radioactivity from [14C]glutamine and also an increased ammonia production (17±3.7%, n = 12).

Administration of furosemide produces a similar degree of potassium depletion and a greater degree of sodium depletion over 3 h when compared to a 3-h acidosis. However, it produces no change in mitochondrial uptake of radioactivity.

These results show that the adaptation of renal glutamine metabolism observed in acidosis is due to the acidosis and is demonstrable in isolated rat kidney mitochondria. The site of adaptation is in the carrier system, which transports glutamine across the inner membrane. The increased transport in acidosis delivers more glutamine to glutaminase, which results in the increased renal ammonia production.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam W. R., Dawborn J. K. Potassium tolerance in rats. Aust J Exp Biol Med Sci. 1972 Dec;50(6):757–768. doi: 10.1038/icb.1972.69. [DOI] [PubMed] [Google Scholar]
  2. Alleyne G. A., Scullard G. H. Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J Clin Invest. 1969 Feb;48(2):364–370. doi: 10.1172/JCI105993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BUSCH H., HURLBERT R. B., POTTER V. R. Anion exchange chromatography of acids of the citric acid cycle. J Biol Chem. 1952 May;196(2):717–727. [PubMed] [Google Scholar]
  4. Blackburn E. H., Hird F. J. Metabolism of glutamine and glutamate by rat liver mitochondria. Arch Biochem Biophys. 1972 Sep;152(1):258–264. doi: 10.1016/0003-9861(72)90213-5. [DOI] [PubMed] [Google Scholar]
  5. Crompton M., Chappell J. B. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem J. 1973 Jan;132(1):35–46. doi: 10.1042/bj1320035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crompton M., McGivan J. D., Chappell J. B. The intramitochondrial location of the glutaminase isoenzymes of pig kidney. Biochem J. 1973 Jan;132(1):27–34. doi: 10.1042/bj1320027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curthoys N. P., Lowry O. H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem. 1973 Jan 10;248(1):162–168. [PubMed] [Google Scholar]
  8. DAVIES B. M. A., YUDKIN J. Studies in biochemical adaptation; the origin or urinary ammonia as indicated by the effect of chronic acidosis and alkalosis on some renal enzymes in the rat. Biochem J. 1952 Nov;52(3):407–412. doi: 10.1042/bj0520407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Damian A. C., Pitts R. F. Rates of glutaminase I and glutamine synthetase reactions in rat kidney in vivo. Am J Physiol. 1970 May;218(5):1249–1255. doi: 10.1152/ajplegacy.1970.218.5.1249. [DOI] [PubMed] [Google Scholar]
  10. Goldstein L. Pathways of glutamine deamination and their control in the rat kidney. Am J Physiol. 1967 Oct;213(4):983–989. doi: 10.1152/ajplegacy.1967.213.4.983. [DOI] [PubMed] [Google Scholar]
  11. Goldstein L. Relation of glutamate to ammonia production in the rat kidney. Am J Physiol. 1966 Mar;210(3):661–666. doi: 10.1152/ajplegacy.1966.210.3.661. [DOI] [PubMed] [Google Scholar]
  12. Goodman A. D., Fuisz R. E., Cahill G. F., Jr Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest. 1966 Apr;45(4):612–619. doi: 10.1172/JCI105375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris E. J., van Dam K. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Biochem J. 1968 Feb;106(3):759–766. doi: 10.1042/bj1060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hird F. J., Marginson M. A. The formation of ammonia from glutamine and glutamate by mitochondria from rat liver and kidney. Arch Biochem Biophys. 1968 Sep 20;127(1):718–724. doi: 10.1016/0003-9861(68)90282-8. [DOI] [PubMed] [Google Scholar]
  15. IACOBELLIS M., MUNTWYLER E., GRIFFIN G. E. Enzyme concentration changes in the kidneys of protein- and/or potassium-deficient rats. Am J Physiol. 1954 Sep;178(3):477–482. doi: 10.1152/ajplegacy.1954.178.3.477. [DOI] [PubMed] [Google Scholar]
  16. Kamm D. E., Asher R. R. Relation between glucose and ammonia production in renal cortical slices. Am J Physiol. 1970 Apr;218(4):1161–1165. doi: 10.1152/ajplegacy.1970.218.4.1161. [DOI] [PubMed] [Google Scholar]
  17. Kamm D. E., Strope G. L. The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices. J Clin Invest. 1972 May;51(5):1251–1263. doi: 10.1172/JCI106920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katunuma N., Tomino I., Nishino H. Glutaminase isozymes in rat kidney. Biochem Biophys Res Commun. 1966 Feb 3;22(3):321–328. doi: 10.1016/0006-291x(66)90485-2. [DOI] [PubMed] [Google Scholar]
  19. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  20. Kovacević Z., McGivan J. D., Chappell J. B. Conditions for activity of glutaminase in kidney mitochondria. Biochem J. 1970 Jun;118(2):265–274. doi: 10.1042/bj1180265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kraaijenhof R., Tsou C. S., van Dam K. The determination of the rate of uptake of substrates by rat-liver mitochondria. Biochim Biophys Acta. 1969 Apr 8;172(3):580–582. doi: 10.1016/0005-2728(69)90156-x. [DOI] [PubMed] [Google Scholar]
  22. LEONARD E., ORLOFF J. Regulation of ammonia excretion in the rat. Am J Physiol. 1955 Jul;182(1):131–138. doi: 10.1152/ajplegacy.1955.182.1.131. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. POLLAK V. E., MATTENHEIMER H., DEBRUIN H., WEINMAN K. J. EXPERIMENTAL METABOLIC ACIDOSIS: THE ENZYMATIC BASIS OF AMMONIA PRODUCTION BY THE DOG KIDNEY. J Clin Invest. 1965 Feb;44:169–181. doi: 10.1172/JCI105132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pagliara A. S., Goodman A. D. Relation of renal cortical gluconeogenesis, glutamate content, and production of ammonia. J Clin Invest. 1970 Nov;49(11):1967–1974. doi: 10.1172/JCI106416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pitts R. F., Pilkington L. A., MacLeod M. B., Leal-Pinto E. Metabolism of glutamine by the intact functioning kidney of the dog. Studies in metabolic acidosis and alkalosis. J Clin Invest. 1972 Mar;51(3):557–565. doi: 10.1172/JCI106844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RECTOR F. C., Jr, ORLOFF J. The effect of the administration of sodium bicarbonate and ammonium chloride on the excretion and production of ammonia; the absence of alterations in the activity of renal ammonia-producing enzymes in the dog. J Clin Invest. 1959 Feb;38(2):366–372. doi: 10.1172/JCI103810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RECTOR F. C., Jr, SELDIN D. W., COPENHAVER J. H. The mechanism of ammonia excretion during ammonium chloride acidosis. J Clin Invest. 1955 Jan;34(1):20–26. doi: 10.1172/JCI103058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SAYRE F. W., ROBERTS E. Preparation and some properties of a phosphateactivated glutaminase from kidneys. J Biol Chem. 1958 Nov;233(5):1128–1134. [PubMed] [Google Scholar]
  30. SCRIBNER B. H., CAILLOUETTE J. C. Improved method for the bedside determination of bicarbonate in serum. J Am Med Assoc. 1954 Jun 12;155(7):644–648. doi: 10.1001/jama.1954.03690250024008. [DOI] [PubMed] [Google Scholar]
  31. Simpson D. P. Pathways of glutamine and organic acid metabolism in renal cortex in chronic metabolic acidosis. J Clin Invest. 1972 Aug;51(8):1969–1978. doi: 10.1172/JCI107003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES