Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Sep;54(3):501–513. doi: 10.1172/JCI107786

The Relationships between Arterial Oxygen Flow Rate, Oxygen Binding by Hemoglobin, and Oxygen Utilization after Myocardial Infarction

Marshall A Lichtman 1,2, Jules Cohen 1,2, Jerald A Young 1,2, April A Whitbeck 1,2, Marion Murphy 1,2
PMCID: PMC301582  PMID: 4855047

Abstract

The interrelationships of arterial oxygen flow rate index, oxygen binding by hemoglobin, and oxygen consumption have been examined in patients with acute myocardial infarction. Proportional extraction of oxygen increased in close association with decreasing oxygen flow rate, and hence, whole body oxygen consumption was constant over nearly a three-fold variation in arterial oxygen flow rate. A reduction in hemoglobin-oxygen affinity at in vivo conditions of pH. Pco2 and temperature also occurred in proportion to the reduction in arterial oxygen flow rate. Therefore, the increased proportional removal of oxygen from arterial blood at low oxygen flow rates, required to maintain oxygen consumption, may have been facilitated by the reduced affinity of hemoglobin for oxygen at in vivo conditions. However, the decrease in affinity did not appear to explain more than 30-40% of the increased extraction.

Respiratory alkalosis was a frequent occurrence in these patients and 2,3-diphosphoglycerate was positively associated with blood pH as well as with the time-averaged proportion of deoxyhemoglobin in arterial and venous blood.

Hemoglobin-oxygen affinity measured at standard conditions and the mixed venous oxygen saturation were equally good indicators of reduced arterial oxygen flow rate in patients without shock. However, S̄vo2 is more easily measured and is a more useful indicator of reduced oxygen flow rate, since its relationship to oxygen flow appears to be independent of affinity changes and time.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberti K. G., Emerson P. M., Darley J. H., Hockaday T. D. 2,3-Diphosphoglycerate and tissue oxygenation in uncontrolled diabetes mellitus. Lancet. 1972 Aug 26;2(7774):391–395. doi: 10.1016/s0140-6736(72)91793-x. [DOI] [PubMed] [Google Scholar]
  2. Asakura T., Sato Y., Minakami S., Yoshikawa H. Effect of deoxygenation of intracellular hemoglobin on red cell glycolysis. J Biochem. 1966 May;59(5):524–526. doi: 10.1093/oxfordjournals.jbchem.a128337. [DOI] [PubMed] [Google Scholar]
  3. Astrup P., Engel K., Severinghaus J. W., Munson E. The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood. Scand J Clin Lab Invest. 1965;17(6):515–523. doi: 10.1080/00365516509083359. [DOI] [PubMed] [Google Scholar]
  4. Astrup P. Red-cell pH and oxygen affinity of hemoglobin. N Engl J Med. 1970 Jul 23;283(4):202–204. doi: 10.1056/NEJM197007232830411. [DOI] [PubMed] [Google Scholar]
  5. Astrup P., Rörth M., Thorshauge C. Dependency on acid-base status of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. II. In vivo studies. Scand J Clin Lab Invest. 1970 Aug;26(1):47–52. doi: 10.3109/00365517009049213. [DOI] [PubMed] [Google Scholar]
  6. Bellingham A. J., Detter J. C., Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest. 1971 Mar;50(3):700–706. doi: 10.1172/JCI106540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chillar R. K., Slawsky P., Desforges J. F. Red cell 2,3-diphosphoglycerate and adenosine triphosphate in patients with shock. Br J Haematol. 1971 Aug;21(2):183–188. doi: 10.1111/j.1365-2141.1971.tb03428.x. [DOI] [PubMed] [Google Scholar]
  8. Desforges J. F., Slawsky P. Red cell 2,3-diphosphoglycerate and intracellular arterial pH in acidosis and alkalosis. Blood. 1972 Nov;40(5):740–746. [PubMed] [Google Scholar]
  9. Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflugers Arch. 1971;326(4):341–356. doi: 10.1007/BF00586998. [DOI] [PubMed] [Google Scholar]
  10. Duhm J., Gerlach E. On the mechanisms of the hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pflugers Arch. 1971;326(3):254–269. doi: 10.1007/BF00592506. [DOI] [PubMed] [Google Scholar]
  11. Finch C. A., Lenfant C. Oxygen transport in man. N Engl J Med. 1972 Feb 24;286(8):407–415. doi: 10.1056/NEJM197202242860806. [DOI] [PubMed] [Google Scholar]
  12. Hutter A. M., Jr, Moss A. J. Central venous oxygen saturations. Value of serial determinations in patients with acute myocardial infarction. JAMA. 1970 Apr 13;212(2):299–303. doi: 10.1001/jama.212.2.299. [DOI] [PubMed] [Google Scholar]
  13. Interiano B., Hyde R. W., Hodges M., Yu P. N. Interrelation between alterations in pulmonary mechanics and hemodynamics in acute myocardial infarction. J Clin Invest. 1973 Aug;52(8):1994–2006. doi: 10.1172/JCI107384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kostuk W. J., Suwa K., Bernstein E. F., Sobel B. E. Altered hemoglobin oxygen affinity in patients with acute myocardial infarction. Am J Cardiol. 1973 Mar;31(3):295–299. doi: 10.1016/0002-9149(73)90258-0. [DOI] [PubMed] [Google Scholar]
  15. Lenfant C., Torrance J. D., Reynafarje C. Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol. 1971 May;30(5):625–631. doi: 10.1152/jappl.1971.30.5.625. [DOI] [PubMed] [Google Scholar]
  16. Lenfant C., Torrance J., English E., Finch C. A., Reynafarje C., Ramos J., Faura J. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J Clin Invest. 1968 Dec;47(12):2652–2656. doi: 10.1172/JCI105948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MURPHY J. R. Erythrocyte metabolism. II. Glucose metabolism and pathways. J Lab Clin Med. 1960 Feb;55:286–302. [PubMed] [Google Scholar]
  18. Metcalfe J., Dhindsa D. S., Edwards M. J., Mourdjinis A. Decreased affinity of blood for oxygen in patients with low-output heart failure. Circ Res. 1969 Jul;25(1):47–51. doi: 10.1161/01.res.25.1.47. [DOI] [PubMed] [Google Scholar]
  19. Miller M. E., Rorth M., Parving H. H., Howard D., Reddington I., Valeri C. R., Stohlman F., Jr pH effect on erythropoietin response to hypoxia. N Engl J Med. 1973 Apr 5;288(14):706–710. doi: 10.1056/NEJM197304052881404. [DOI] [PubMed] [Google Scholar]
  20. Oski F. A., Gottlieb A. J., Delivoria-Papadopoulos M., Miller W. W. Red-cell 2,3-diphosphoglycerate levels in subjects with chronic hypoxemia. N Engl J Med. 1969 May 22;280(21):1165–1166. doi: 10.1056/NEJM196905222802108. [DOI] [PubMed] [Google Scholar]
  21. Oski F. A., Gottlieb A. J., Miller W. W., Delivoria-Papadopoulos M. The effects of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences. J Clin Invest. 1970 Feb;49(2):400–407. doi: 10.1172/JCI106249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rorth M. Hemoglobin interactions and red cell metabolism. Ser Haematol. 1972;5(1):1–104. [PubMed] [Google Scholar]
  23. Rose Z. B., Liebowitz J. Direct determination of 2,3-diphosphoglycerate. Anal Biochem. 1970 May;35(1):177–180. doi: 10.1016/0003-2697(70)90023-0. [DOI] [PubMed] [Google Scholar]
  24. Rörth M., Nygaard S. F., Parving H. H. Effect of exposure to simulated high altitude on human red cell phosphates and oxygen affinity of hemoglobin. Influence of exercise. Scand J Clin Lab Invest. 1972 May;29(3):329–333. doi: 10.3109/00365517209080248. [DOI] [PubMed] [Google Scholar]
  25. Scheinman M. M., Brown M. A., Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation. 1969 Aug;40(2):165–172. doi: 10.1161/01.cir.40.2.165. [DOI] [PubMed] [Google Scholar]
  26. Severinghaus J. W. Blood gas calculator. J Appl Physiol. 1966 May;21(3):1108–1116. doi: 10.1152/jappl.1966.21.3.1108. [DOI] [PubMed] [Google Scholar]
  27. Torrance J., Jacobs P., Restrepo A., Eschbach J., Lenfant C., Finch C. A. Intraerythrocytic adaptation to anemia. N Engl J Med. 1970 Jul 23;283(4):165–169. doi: 10.1056/NEJM197007232830402. [DOI] [PubMed] [Google Scholar]
  28. Valeri C. R., Fortier N. L. Red-cell 2,3-diphosphoglycerate and creatine levels in patients with red-cell mass deficits or with cardiopulmonary insufficiency. N Engl J Med. 1969 Dec 25;281(26):1452–1455. doi: 10.1056/NEJM196912252812605. [DOI] [PubMed] [Google Scholar]
  29. Woodson R. D., Torrance J. D., Shappell S. D., Lenfant C. The effect of cardiac disease on hemoglobin-oxygen binding. J Clin Invest. 1970 Jul;49(7):1349–1356. doi: 10.1172/JCI106351. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES