Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Sep;54(3):514–518. doi: 10.1172/JCI107787

Resting Membrane Potential and Ionic Distribution in Fast- and Slow-Twitch Mammalian Muscle

David S Campion 1
PMCID: PMC301583  PMID: 4854140

Abstract

The resting membrane potential and intracellular potassium and sodium concentration of three guinea pig hind limb muscles were studied. These properties are related to the gross color, the speed of contraction, and the biochemically defined fiber type composing the muscle. The resting membrane potential and intracellular content were: white vastus (grossly white, fast-twitch glycolytic) -85.3 mV. potassium 171.9 meq/liter; soleus (grossly red, slow-twitch oxidative) -69.7 mV, potassium 137.5 meq/liter; and red vastus lateralis (grossly red, fast-twitch oxidative glycolytic) -71.7 mV, potassium 139.6 meq/liter. In soleus and red vastus lateralis, the relative permeability of sodium to potassium was 0.041 and 0.036, while in white vastus it was 0.015. These results give us the first exception to the hypothesis that fast-twitch fibers have higher intracellular potassium and higher resting membrane potential than slow-twitch fibers.

Full text

PDF
514

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard R. J., Edgerton V. R., Furukawa T., Peter J. B. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol. 1971 Feb;220(2):410–414. doi: 10.1152/ajplegacy.1971.220.2.410. [DOI] [PubMed] [Google Scholar]
  2. Brooks J. E., Hongdalarom T. Intracellular electromyography. Resting and action potentials in normal human muscle. Arch Neurol. 1968 Mar;18(3):291–300. doi: 10.1001/archneur.1968.00470330081008. [DOI] [PubMed] [Google Scholar]
  3. Burke R. E., Levine D. N., Zajac F. E., 3rd Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science. 1971 Nov 12;174(4010):709–712. doi: 10.1126/science.174.4010.709. [DOI] [PubMed] [Google Scholar]
  4. CREUTZFELDT O. D., ABBOTT B. C., FOWLER W. M., PEARSON C. M. MUSCLE MEMBRANE POTENTIALS IN EPISODIC ADYNAMIA. Electroencephalogr Clin Neurophysiol. 1963 Jun;15:508–519. doi: 10.1016/0013-4694(63)90071-3. [DOI] [PubMed] [Google Scholar]
  5. Cunningham J. N., Jr, Carter N. W., Rector F. C., Jr, Seldin D. W. Resting transmembrane potential difference of skeletal muscle in normal subjects and severely ill patients. J Clin Invest. 1971 Jan;50(1):49–59. doi: 10.1172/JCI106483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fiehn W., Peter J. B. Properties of the fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscles. J Clin Invest. 1971 Mar;50(3):570–573. doi: 10.1172/JCI106526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodgold J., Eberstein A. Transmembrane potentials of human muscle cells in vivo. Exp Neurol. 1966 Jul;15(3):338–346. doi: 10.1016/0014-4886(66)90056-2. [DOI] [PubMed] [Google Scholar]
  8. Guth L. "Trophic" influences of nerve on muscle. Physiol Rev. 1968 Oct;48(4):645–687. doi: 10.1152/physrev.1968.48.4.645. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoh J. F., Salafsky B. Effects of nerve cross-union on rat intracellular potassium in fast-twitch and slow-twitch rat muscles. J Physiol. 1971 Jul;216(1):171–179. doi: 10.1113/jphysiol.1971.sp009516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mark R. F. Matching muscles and motoneurones. A review of some experiments on motor nerve regeneration. Brain Res. 1969 Jul;14(2):245–254. doi: 10.1016/0006-8993(69)90108-5. [DOI] [PubMed] [Google Scholar]
  12. McComas A. J., Mrozek K., Gardner-Medwin D., Stanton W. H. Electrical properties of muscle fibre membranes in man. J Neurol Neurosurg Psychiatry. 1968 Oct;31(5):434–440. doi: 10.1136/jnnp.31.5.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NORRIS F. H., Jr Unstable membrane potential in human myotonic muscle. Electroencephalogr Clin Neurophysiol. 1962 Apr;14:197–201. doi: 10.1016/0013-4694(62)90029-9. [DOI] [PubMed] [Google Scholar]
  14. Peter J. B., Barnard R. J., Edgerton V. R., Gillespie C. A., Stempel K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972 Jul 4;11(14):2627–2633. doi: 10.1021/bi00764a013. [DOI] [PubMed] [Google Scholar]
  15. SRETER F. A., WOO G. CELL WATER, SODIUM, AND POTASSIUM IN RED AND WHITE MAMMALIAN MUSCLES. Am J Physiol. 1963 Dec;205:1290–1294. doi: 10.1152/ajplegacy.1963.205.6.1290. [DOI] [PubMed] [Google Scholar]
  16. Yonemura K. Resting and action potentials in red and white muscles of the rat. Jpn J Physiol. 1967 Dec 15;17(6):708–719. doi: 10.2170/jjphysiol.17.708. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES