Abstract
Addition of increasing amounts of 125I-labeled desialylated thyroxine-binding globulin (DTBG) to hepatic cell membranes resulted in a progressive increase in binding. Saturability of membrane sites was indicated by a concentration beyond which further increases in [125I]DTBG resulted in no further binding. The binding curve for [125I]DTBG was similar to binding curves of desialylated orosomucoid, fetuin, and ceruloplasmin.
An inhibition assay system using hepatic cell membranes showed that desialylated orosomucoid had a greater affinity for membrane binding sites than did DTBG but desialylated fetuin and ceruloplasmin bound less avidly than DTBG.
Serum from normal persons and patients with a variety of illnesses was tested for its ability to inhibit [125I]DTBG binding. The inhibitory activity of 1 ml of normal serum was equivalent to that of 0.2-2 μg DTBG. Patients with Laënnec's cirrhosis, biliary cirrhosis, and hepatic metastases had greatly increased inhibitory activity in their serum. Patients with jaundice due to extrahepatic obstruction had inhibitory activity not significantly different from that found in normal serum.
Column chromatography of normal serum on Sephadex G-200 resulted in inhibitory activity throughout the range of protein molecular weight. Desialylation of normal serum with neuraminidase enhanced the inhibitory activity but did not change the distribution of the activity. Gel chromatography of cirrhotic serum showed markedly increased inhibitory activity associated with the macroglobulins and the 4.5S peak and a new peak of inhibitory activity in the low molecular weight area was also seen.
Inhibition of desialylated glycoprotein binding to liver cell membranes by serum from patients with hepatocellular disease raises the possibility that desialylated serum glycoproteins accumulate in the circulation and that patients with compromised hepatocellular function may no longer be able to clear them from the circulation. Alternatively, accumulation of desialylated glycoproteins in the circulation could result from defective protein synthesis by the diseased liver.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson N. N., Jr, Tan L. Y., Peters B. P. Galactosyl transferase-the liver plasma membrane binding-site for asialo-glycoproteins. Biochem Biophys Res Commun. 1973 Jul 2;53(1):112–118. doi: 10.1016/0006-291x(73)91408-3. [DOI] [PubMed] [Google Scholar]
- Baenziger J., Kornfeld S., Kochwa S. Structure of the carbohydrate units of IgE immunoglobulin. II. Sequence of the sialic acid-containing glycopeptides. J Biol Chem. 1974 Mar 25;249(6):1897–1903. [PubMed] [Google Scholar]
- Cuatrecasas P., Illiano G. Purification of neuraminidases from Vibrio Cholerae, Clostridium Perfringens and influenza virus by affinity chromatography. Biochem Biophys Res Commun. 1971 Jul 2;44(1):178–184. doi: 10.1016/s0006-291x(71)80175-4. [DOI] [PubMed] [Google Scholar]
- Eliakim M., Zlotnick A., Slavin S. Gammopathy in liver disease. Prog Liver Dis. 1972;4:403–417. [PubMed] [Google Scholar]
- FLODIN P., KILLANDER J. Fractionation of human-serum proteins by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:402–410. doi: 10.1016/0006-3002(62)90104-x. [DOI] [PubMed] [Google Scholar]
- Hickman S., Kornfeld R., Osterland C. K., Kornfeld S. The structure of the glycopeptides of a human M-immunoglobulin. J Biol Chem. 1972 Apr 10;247(7):2156–2163. [PubMed] [Google Scholar]
- Kim Y. S., Perdomo J., Whitehead J. S., Curtis K. J. Glycosyltransferases in human blood. II. Study of serum galactosyltransferase and N-acetylgalactosaminyltransferase in patients with liver diseases. J Clin Invest. 1972 Aug;51(8):2033–2039. doi: 10.1172/JCI107009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornfeld R., Keller J., Baenziger J., Kornfeld S. The structure of the glycopeptide of human gamma G myeloma proteins. J Biol Chem. 1971 May 25;246(10):3259–3268. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levy R. P., Marshall J. S., Velayo N. L. Radioimmunoassay of human thyroxine-binding globulin (TBG). J Clin Endocrinol Metab. 1971 Mar;32(3):372–381. doi: 10.1210/jcem-32-3-372. [DOI] [PubMed] [Google Scholar]
- Marasini B., Agostoni A., Stabilini R., Dioguardi N. Serum proteins of hepatic and extrahepatic origin in alcoholic cirrhosis. Clin Chim Acta. 1972 Sep;40(2):501–502. doi: 10.1016/0009-8981(72)90365-8. [DOI] [PubMed] [Google Scholar]
- Marshall J. S., Pensky J., Green A. M. Studies on human thyroxine-binding globulin. VI. The nature of slow thyroxine-binding globulin. J Clin Invest. 1972 Dec;51(12):3173–3181. doi: 10.1172/JCI107144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morell A. G., Gregoriadis G., Scheinberg I. H., Hickman J., Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971 Mar 10;246(5):1461–1467. [PubMed] [Google Scholar]
- Murray-Lyon I. M., Clarke H. G., McPherson K., Williams R. Quantitative immunoelectrophoresis of serum proteins in cryptogenic cirrhosis, alcoholic cirrhosis and active chronic hepatitis. Clin Chim Acta. 1972 Jun;39(1):215–220. doi: 10.1016/0009-8981(72)90318-x. [DOI] [PubMed] [Google Scholar]
- NEVILLE D. M., Jr The isolation of a cell membrane fraction from rat liver. J Biophys Biochem Cytol. 1960 Oct;8:413–422. doi: 10.1083/jcb.8.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pensky J., Marshall J. S. Studies on thyroxine-binding globulin (TBG). II. Separation from human serum by affinity chromatography. Arch Biochem Biophys. 1969 Dec;135(1):304–310. doi: 10.1016/0003-9861(69)90544-x. [DOI] [PubMed] [Google Scholar]
- Ray T. K. A modified method for the isolation of the plasma membrane from rat liver. Biochim Biophys Acta. 1970 Jan 6;196(1):1–9. doi: 10.1016/0005-2736(70)90159-8. [DOI] [PubMed] [Google Scholar]
- Van Den Hamer C. J., Morell A. G., Scheinberg I. H., Hickman J., Ashwell G. Physical and chemical studies on ceruloplasmin. IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation. J Biol Chem. 1970 Sep 10;245(17):4397–4402. [PubMed] [Google Scholar]
- Van Lenten L., Ashwell G. The binding of desialylated glycoproteins by plasma membranes of rat liver. Development of a quantitative inhibition assay. J Biol Chem. 1972 Jul 25;247(14):4633–4640. [PubMed] [Google Scholar]

